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INTRODUCTION

CSE,Studies est Adequacy focused on two theoretical prdblems

during FY11981: 1) procedures for estimating reliability and 2) unproved

techniques for identifying ineffective
0
dfstractors. Applications of these

techniques were also to be demonstrated in the analysis of multipae choice

tests. As any psychometrician will agree, the areas of reliability and

identifying distractors are intimately related. Progress on one area, is

likely to influence thought on the other. Although, for the purposes of

this report, the progress of research is divided into two discrete sections,

in fact, selected papers integratendings in the two areas__ In the

August, 1980 plan forthe Test Design Project, it was proposed that these

analyses consider data from the study of "Literacy Assessment in a School

District Context." HoWeverr llat the request of the NIE, the latter study

was deleted from CSE's scope of work; as a result, empirical analyses

trying out newly proposed solutions used available data

`Work in Studies of Test Adequacy proceeded faster thai anticipated.

Initial solutions required little revision, and an important new technique

proved very valuable in addressing several test adequacy problems. As a

result, more work than anticipated was completed, and an additional.aspect

of reliability, test length, was. also addressed, although not required by

the scope of work.
. ) ,A

. , t

The accomplishments for the year are briefly descr(bed below, including

S

work directly related to each problem area and the extension of the developed

solutions to other contexts.



'Note on Methodology

The methodology used in testing the solutions in the problem areas of

reliability and identifying distractibrs is a mathematical one. In general,

it depends upon the-positing of a "lemma", a mathematical statement" presumed

to solve a given prol(olem, and then testing mathematically the quality, of the

solution. In the text of this report. as the Process of exploring potential

solutions is-traced, "advantages,' and "limitations" are noted but not fully

described. These terms are used in the mathematical sense and are not matters

of personal preference. Advantages (or limitations) of pOtential solutions

are demonstrated mathematically 41 the coordinate, referenced research papers

prepared in this project and are obvious by inspection of the equations.

The estimation of reliability

The problem with estimating the reliability of tests is that the usual

and customary estimation procedures either ignore the problem of guessing

altogether or make clearly inappropriate assumptions about how guessing

affects the data. One frequent) assumption is that guessing is completely

random. At the beginnin f the year it seemed that existing latent structure

models might provide a olution to the gues'sing issue. However, the obvious

problem with this soluti \-1 is that the required model deamnds mathematical

assu freqently impossible to meet. Elaboration of this view

is cont report entitled "Methods and Recerit Advances on in Measuring

Achievem was decided, therefore, to search for another model, one

which would allow a solution to the guessing ssue within more. realistic

-2-



constraints. A first attempt in this search is described in "An Extension

of the. Dirichlet-Multinomial Model that Allows True Score and Guessing to

be Correlated." The new model had theoretical advantages over existing

4 models, but there was no convincing evidence that it had any practical
44

advantages, and after considerable review, it was abandoned.
I

The next attempt was based on an answer-until-correct scoring model.

This solution is described in- "Some Empirical and Theoretical Results on

an Answer-Until-Correct Scoring Model". All indications are that this new

model substantially improves on existing procedures, both theoretically
.

tom)
and empirically. However, in.a very few instances, some pf the items used

in the study seemed-inconsistent with the assumptions being made. Accordingly,
1

another empirical, study was conducted to see whether an additional model

would "explain" those remaining items. The results of this study are contained

in "Some New Results on an Answer-Until-Correct Scoring Procedure": At the same

time, it was also thought desirabl4 to develop a new reliability coefficient

that reflects the effectiveness of the distractors being used, as an.attempt

to integrate the main substantive areas under review, The first step toward

this goal is described in "Using k out of n System Reliability to Study and

Characterize Tests". However, the reasonableness of certain requisite

assumptions was not uniformly stable, and so additional work was ndertaken

to find a way of improving this situation. A procedure for doing this is

shown in "Bounds on the k out of n Reliability'of a Test, and,an Exact Test

for Rand& Guessing".

In addition, a related concern of reliability is the matter of test

length. Two projects previously funded by NIE include approaches to

4: )



criierion-referenCed tests,. and determining test length. Our new results

have important implications in both these areas, which are dei'cribed in

"Determining the Length of a Criterion-Referenced Test when an Answer-
\

Until-Correct Scoring-Procedure is 4ed", in "A Closed Seqdential Procedure

for Comparing thealnomial Distribution to a Standard" and in "A Closed

Sequential ProCedure for Answer-Until-Correct Tests".

In this general areeof reliability, the problem of reliable selection

also occurs, that is, technlqu4s.for identifying the t best of k examinees,
A

An_ existing procedure is, .ugitally impractical because it -mi -ght require too

many items, a test length issue. A step toward solving this problem is to

deVelop retrospective methods, and some results on how thiStight be done

/
are described in "Approximating the Probability of Identifying the'Most

Effective Treatment for the Case of Normal Distributions Having Unknown

and Unequal Variances." Additional materials generated this year are:

.--A Cautionary Note on Estimating the Reliability of a

Mastery Test with the 4pta Binomial. Model

--Methods and Recent Advances in Measuring Achievement;
A /Response to Molenaar

Each of these pipers is provided in the following pages.

The identifica ion of distrac ors

Our orig nal plan for analyzing distractors is described in "Analyzing

the Distractrirs of Multe.fple-Choice Test Items or Partitioning'MultinoAal Cell

Prdbabiliti s with Respect to a Standard." However, this apptoach provedto

to

be unsays actory on eileral grounds, 'In particular? it dtd not give a direct

meas of ow effective the distractors really are Qne possibility considered

itt

10



for this particular issue was to analyze how distractors behave in:the

context of the answer-unti-correct test format. Two procedures were

proposed and*described.in "Solving Measurement Problems with an Answer-

Until-Correct Scoring Procedure." A problem that remained was determining

whether. they' assumptions made were reasonable. This was empirically

investigated in "Some Empirical and Theoretical Results on an Answer-Until-

Correct Scoring Procedure", and in "Some New Results on an Answer-Until-Correct

Scoring Procedure."

Neit, it was deemit important to consider how' distracfOrs might be-

analyzed in terms of their relation to the n items on a test. This work

was explicated in "Using k out of-n System Reliabpopit.y. to Study and

Characterize Tests" and in "Boundi on the k out Of n Reliabilityof a Test.

workwon.distractors is described in "A Polarization Test for

Making Inferences About the Entropy of Muultiple-Choice Tests", and in

Analyzing the Distractors of Multiple.=Choice Test Items or Partitioning

Multinomial'Cell Probabilities With Respect to a Standard,

II
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METHODS AND RECENT ADVANCES IN

MEASURING ACHIEVEMENT:
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CENTER FOR THE STUDY OF EVALUATION
Graduate School of Education

Univervity of California . Los Angeles

and the/

'DEPARTMENT OF PSYCHOLOGY
\ University of Southern California

12

00.

t



ABSTRACT

Commenting on a paper I,publisfied in this joUrnal Wilcox, 1979a),

Molenag4 (1981) has raised some questions abot&t the usefulness and

feasibility of measuring achievement with latent structure models. In
-,

the last twcr.orIthree years, consider
.
e progress has been made regard-

ing the issues mentioned by MolenAar. The *pose of this note is to in-'
,,

,
dicate the progress that, has been made, to describe alternative solutions

'that have been recently proposed, and td comment on some of Molenaar's

suggestions on how the model might be improved.

1

ti
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1. INTRODUCTION

Commenting on a paper I published in this journal (Wilcox, 19794,

Mbl- aar 1981) has raised some important issues related to measuring

I

41
d''

achievement with latent structure models. The purpose of,his note is to

briefly outline where we now stand'in regard to the concerns expressed

by Molenaar. Before 'doing sot let meestalgish some natation, and make

some opening remarks.

Suppose we )have domain of skids and a single examinee. Let g be,

the proportion of skills the examinee has acquired. Further suppose that

every skill is represented by one or more items. Let 8=Pr(correct response I

the examinee does not know) when the examinee answers,an item corresponding

to a randomly sampled skill. Finally, let y be the joint probability of

a not knowing and being correct. Thus, y =0(1-4).

.c) The above model is based on what I cay Type II guessing. It

important to realize that the latent strudture models referenced in my

. paper (Wilcox, 19791, p. 62) are based on Type I guessing. That is,

guessing is defined in terms of a single skill and a population of examinees.
t$.

The purpose of the first section of may paper was to show that we can inter-
,

change the role of items and examinees to estimate Type II guessing which \

. lin turn'makes it possible to soltthe problems described in sections 2

and

2. PAIRWISE EQUIVALENT ITEMS

-The-first issue raised by Molenaar-is about the notion of equivalent

items. Two items that measure the same skill 'are said to be equivalent if an

examinee knows both or neither one. Molenaar points out that equivalent items
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might exist in some instances, but there are situations where the creation

*of equivalent items is difficult or even impossible: Heisof course,

correct.

Two aspect's of this problem need to be addressed. The first is to

indicate six ways we can empirically check whether two or more items are

equivalent. The.second is to briefly comment-on four alternative approdches

to the .Problem of guessing.

The first and perhaps mast obvious approach to checking whether ;tuff
4%

are
.

equivalent is to apply the usual chi-square goodness-of-fit test tO

the latent structure model,being used. Macready and*Dayton (1977) illus-
4

trate this for a model based on Type I guessing and equivalent items. We

.note that a good fit to their,data was obtained.

Observe A thOugh, that a poor fit does not necessarily imply that iten

are not equivalent. qt might mean that a more general model is needed.

For expple, we might assume that Pr(inGorrect response ( examinee knows) >O

(Macready and Dayton, 1977).

The second approach is to estimate an index that measures equivalence

(Baker and Hubert, 1977)..

Another way to check whether. items are equivalent is t# use latent

partition analysis in the manner proposed by Hartke (1978).

ANEW
The fourth solution is to first assume that one of the items is

hierarchically related to the second. A test of this assumption is given

by White and Clark (1973). (See, also, Dayton. and Macready, 1976.) If

theitems are indeed equivalent, one of the parameters in the resulting

. latent structure model, say 6, will be zero (Wilcox, 198pa). If we assume

PO, a test of the hypothesis that 6=0 can be made by testing the equality

, of two cell probabilities in a 2x2 contingency table.. This-can be done
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f

with McNemar's test. Some results pn)tr power of McNemar's test are given
. .

in Wilcox (1977a).
0

A fifth cheek,on the assumption of equivalent item pairs Can be made

If we assume 0 is 'bounded above by some constant le than 1. For example,

if 0 < 11, then from Wilcox (1979a) -R. 64) it folloOs that two cell prOba-

bilities in a 2x2 contingency tabTe must be less than or equal to k. ,One

....Way to check this assumption is described by Wilcox (in press, a).

finally, assuming 0 < z alsaliplies that for a rapdomly,sampled

, ---
pair of equivalent items, the prollability of a correct-incorrect response

(and the probability of an incorrect-correct response) is'less than or

equal to the probability of two incorrect responSes. This inequality is

easily verified by again referring to Wilcox (1979a, p. 64). Robertson

(1978) describes a test of this assumptlon.

Alternative Approaches to Guessing,

Suppose that empirical evidence does'pot support the assumption of

equivalent items or that we decideapriori that equivalent items do not
. .

exist. In this case we nave four alternative approaches to the problem

of guessing. The first is to utepcompletion items. This might, eliminate

guessing, but errori'at the item level might still exist (Harris et al'.,

1980; MaciTady and Dayton, 1977): Also, in many situations, scoring com-

pletion items is economically infeasible.

If multiple-choice items must be used, the second alternative is to

assume guessing is at random. Lord and Novick (1968, p. 309) note that

this assumption can seldom be seriously entertained. Empirical investi-
.

gations on the usual correction-for-guessing formula score.support this
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view (Cross and Frary, 1977; Bliss, 1980). We might assume guessing is at

random anyway, but this can haye serious 'cconsequerices in terms of the design

and accuracy of a test (WeitZman, 1970; Wilcox, 1980b, 1980c).

Another. approach is to assume hierarchically related items are available.,

The resulting model includes equivalent items as a special case (e.g.,

Wilcox, 1980a). Dayton and Macready (1976) describe a general framework

for handling hierarchically related items. For an even more general

mode }, see Dayton and,Macready (1980).

The fourfh alternative is to use an answer - until- correct scoring

procedure proposed byWilcox (19811. (For a related scoring rule, see

Brown, 1965.) Suppose multiple-choice test items are used with t

nadtes from which to choose, one of which is correct. An examinee chooses

altaghatives until the correct response is tdentMed., Assume the exam-
4

4
inee can eliminate i distractors from consideration len the correct re-

sponse is-not known, i=0,1,...,t-2. Following Horst (1933), we also assume

that the examinee guesses at randot from among those distractors that are

not eliminated. For a specific examinee let pi be the probability of

choosing the correct respond on the ith attempt of a randomly selected

item (i=1,...,t), and let 4j (j=9,...,t-2) be the proportion of items

in the item pool, for which the examinee can eliminate j distractors. The

probability of a correct. on the first attempt is

t-2

-pi t E 4i7(t-j)
j=0 "

and ,

t-1

Pi = E ./(t-j)

j=0
(i=2,...,t).

17



6

The model assumes

PI 2:Pi :" Pt
./(2.1)

which can be tested (Robertson, 1978). When (2.1) is assumed, maximum

likelihood estimates. of the pi's are easily obtained using the "pool-
,

adjacent-violators" algorithm (Barlow, et al., 1972,'pp. 13-18). If Pi and

p2 are the usual sample mean estimates of p1 and p2, it follows that

a maximum likelihood estimate of is E=01-132 if fill>P2, and if 0142,

the-estimate is zero (Zehna, 1966).

In addition to correcting for partial information, the model can

solve several other measurement problems (Wilcox, 1981b, 1980e). Suppose,

for example, we havean n-item test, and that g is the expected number of

items for which we'correctly determine whether the typical examinee knows

the correct response. Using results in the engineering literature on

"system reliability" it is possible to make inferences about whether .E is
1

large or, small 00 l cox , 1980el.

Before concluding this section we make the important observation that la-

tent structure modelskbased on the notion of equivalent items have been suc-

cessfulty applied to real data sets (Macre'dy & Dayton, 1977; Harris & Pearlmannl,

1978) More recently, Professor C. W. Harris and his collegues made exteristVe

use these models to measure the arithmetic achievement of studepts in

various grade levels. Examinees were tested every week over a period of

many weeks. All indications are that the models are indeed useful.

Finally, Molenaar writes that the estimates of n are unbiased

only if the selected pairs of equivalent items are representative of the

item pool. Actually, the estimates appear to be always biased whether we

18
P
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have a random sample or not. However, we do get maximum likelihdod esti-

mates as long as the estimates have an admissible value (Wilcox, 1977).

3. THE MULTINOMIAL MODEL

In the next section of Molenaar's paper, he turns his attention to

the multinomial model. Suppose an examinee responds to n items, none of

which are equivalent. (A strong true score model for equivalent item

pairs is described in Wilcox, 1981.) Still considering only a single
4

examinee, let y be the number of items he/she knows, and let z be the num--,
ber of items not known but guessed correctly. My paper (Wilcox, 1979a)

considers a bivariate Analog of the binomial error model (Keats and Lord,

1962; Lord,' 1965; Lord and Novick, 1968, chapter 23). In particular, I

assume that the joint density of y and z is

f(y,z ,y) = 91gYiz(1-4-y)n-y-z
y!z!(n-y-z)!

(3.1)

where n is the numil of items on the test. Ordinarily we cannot make

inferences about 4 and y, but As already indicated, we can make infer-
4

ences about them when equivalent of hierarchically related items are

Ki
available, or when* anjer- until- correct scoring procedure is used.

Of coursotwe can.assume guessing is random (see in particular,

Morrison ana,Brockway, 1979), but I have already desaribed the problems.

with his. However, we can empirically test whether guessing is at

random (Weitzman, 1970; Wilcox, 19,814), When an answer-until-correct

scoring procedure is used, Ws 'corresponds to testing whether p2=p3=
=Pt*

If guessing is not at random, perhaps infrequently chosen distractors( could

/
19
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be modified or replaced so that this assumption is more realistic. In

this case, results in Morrison and Brockway (1979)', and Molenaar (1977),

might be applied. Wilcox (in press a) gives some results that might be

useful in identifying those distractors that are infrequently chosen.

Note that we can also measure how far away guessing is from being random '

(Wilcox, 1981b), and we can empirically determine how many diftractors

are needed when testing a particular population of examinees (Wilcox,

1980e).

.46

ANt

4. THE DIRICHLET PRIOR

In Wilcox (1979a), I assume that c and y have a bivariate Dirichlet

density given by

T( ) ( ) ( ) C Y (1
3

v1-1 v2-1 v -1

g(4'Y) (4.1)vi r v2 r v3

If we can estimate c and y for N randomly sampled examinees, we cart esti-

mai'thev.'t. I used equivalent items in Wilcox (1979a) to do this, but

as a eady noted, two other approaches are now availablewhich do not

assu4'random guessing.

Let cirand ai be the maximum likelihood estimates of 4 and B, respectively,

four the ith randomly sampled examinee (i=1,...,N). Molenaar raises the

interesting question of whether we can improve upon Ii and Ai by shrinking

their values toward each other. Molenaar alludes to the possibility of

using Kelley's regression estimate of true score. ' If "better" estimates

of 4 and 6 are available, we might be abletz get improved estimates of

the hyperparameters vl, v2 and v3. If an ensemble squared error loss

function is believed to be appropriate when estimating c(and 0 there is



I
4%

reason to hope that-such a procedure might improve upon the maximum'

likelihood estimate of 4 (and 0) used in my paper (e.g., Efron and

Morris, 1973; Wilcox, 1978a),. Griffin and Krutchkoff (1971) show that

Kelley's regression estimate of a parameter is the optimal linear estimate

under .quared error loss if we start with an unbiased, esti

mate of the parameter. However, the estimates of c (and a) is .biased,

and so it is not clear whether Kelley's regression equation will help im-
C

prove my estimates of c and a. We might use Kelley's regression estimate

anyway, but the efficacy of this needs to be checked. For an alternative

way of possibly improving the estimation of c (and a), see Wilcox (1980c).

A_
Molenaar also implies that using Kelley's regression, estimate of

4 and 0 might also improve the estimates of the vi's. There is unfor-

tunately, no evidence that this is ever the case. In an unpublished re-
,

port, I tried a similartactic in a situation where unbiased estimates of

a parameter were available, -but the results were not overly convincing.

Next Molenaar comments on the numerical example in my paper. To

'estimate the v.'s, I used artificially generated data on 1,000 examinees

taking 1000pairs of equivalent items. Molenaar inferred that a large

-number of items and examinees are needed to get reasonably ad-Curate esti-

mates. If should be pointed out, however, that the number of examinees.

.

and items was completely arbitrary. Justow accurate an estimate of the

v.'s we get with a smaller number of items is unknown. We would, of

course, expect the accuracy of the estimates'to depend on actual

values of c and a (cf. Wilcox, 1980a). From Wilcox (1979b) we would

also expect to find instances where a moderate number of examinees would

give wildly inaccurate results. Such situations might be rare, but this

\

21
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has not been established. The main point is that currently there is no

informatidn on how many items should
b used when applying the model.

Note that for reasons given by Mosimann (1962} a slight modification .j

of the estimates of the v.'s used in Wilcox (1979a) might be desirable,.

Mosimann (1962) describes the procedure, and Wilcox (1981a) indicates, how

to apply'itto the case where we have pairs of equivalent items. Any

future investigations on estimating the vi's should include this procedure. \

Molenaar also raises the important issue that the binomial error

model (and consequently the multinomial model) implies that all items hive

the same level of difficulty. From a theoretitatpoint of vi-ew, this

restriction o thyindel is unacceptable. A simple way to eliminate this

problem is to use an approximation to the compound binomial distribution

(Lord, 1965). However; for many *poses, thiS seems to be unnecessary

(Lord, 1965; Algina and Noe, 1978; Wilcox, 1977b, 1978a). Also the beta-

binomial model has given good results in other empirical investigations

(Gross and'Shulman, 1980; Subkoviak, 1978a). Since the beta-binomial

model appears to be both useful and robust in certain respects; there is

hope that the Dirichlet-multinomial will share the same properties since

it is the multivariate-analog of the baa-binomial model. Some evidence

for this is given in Wilcox (in press b) where the Dirichlet-multi mial

model was applied to real data, bLit more work needs to be done.( For

further discussions of the binomial and beta,obinomial models,-ste Wilcox

(1981).

Molenaar suggests that to accomodate unequal item difficulties, we

might use the Rasch model. (For a review of latent trait models, see

Hambleton et al., 1978; and for a review of some 'recent developments on

22
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the Rasch model, see Wainer et al., 1980.) However, this model does not
4

yield 4n estimate of s, at.least not in any way that has been demonstrated,

and it ignores the problem of guessing. Some latent trait models--but .

not the Rasch model--have what is sometimes called a guessing parameter.

This is just the lowe)r asymptote of the item characteristic curve. Note,

however, that this is different from the notion of Type I and Type II

. guessing. Thus, the Raschmodel is unable'tb solve any of the measurement

problems described in Wilcol(1981b, 1980e). No claim.is being made that

lateAt trait models are useless, nor do I believe that latent trait and

latent structure models are in competition with one another--the point is

that they answer` different questions. For further critical remarks

regarding the Basch model, see Lord (1974).

5. MODEL ADEQUACY

I

Molenaar objects to the implication of the Dirichlet-multinomial model

that and 0 are independent over the population of examinees,and from a

theoretical point of view, he is, of course, correct. As Molenaar puts it

"One wonders whether a person who knows many item's from the domain will

also be more clever in guessing the remaining ones if only by the 'warm,

glow of success'"? The first point is that if we throw out the model

because 4 and a are independent, we must throw out the random guessing

model as well since ; and 0 are again independent. The second point is

that when addressing a particular measurement problem the seriousness of

assuming ; and 8 to be independent is not known.
-

. To allow ; and B to be correlated, there appears to be three possibilities.

41
The first is to replace (3.1) with
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co C4T r(vi+v2+v3+j)
g(,y) = E J

T(4' r(Vi+j)r(V2)r(V3)

12

4.1)

wherec.is a constant depending on j, but not T T is an unknown parameter,

and 'v is a function of T (Wilcox, .1981a). The 'density (4.1) contains (3.1)

as a special case. Moreover, if ands are assumed to be continuous,

they are independent if and only if (4.1) reduces to (3.1). One,choice

for c. and T is c.=(j1).
-1

and T(T)=J, in which case the marginal density

of belongs to the non-central beta family. Assuming (4.1) holds, let

r=v1, s=v
2
+v

3'
and let Ey mean expectation with respect to.the probability

function

c TY

f(Y) T ATT,

The first four moments of the Marginal density of i are

111

= 1-sE y(
J

4

S(S-1)111(S+1)SEy( 141+1+y )

r+!+y, )
2s(s -1) I0-1)E

1

y(
I
r+s+1+y,jp

3
-:= 1/2{2-5(s-1)(s2)Eyi

lot

- s(s+1)(s+2) E
y

( ))
r+s+2+y

114 i{113-di)
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where

d1 = 1/20-1-E(y)=.2s-s(s-1)(s+1)E.4 1 ]
r+s+1-11,

+ s(s+1)(s+2) E ( d2 },
y

1

r+s+2+y
4

E(y) = TT(T)/T(T), an&

r F E(y)-2(s+1)+(s+1)(s+2) E(
1

r+s+y+2

(s+1)(s+3) Ef r+s++3 )
I

I

13 % -

(s+1)2 ai 1

+y+3
Ei

r+s
1

r++2+y rl+S+3+y

Note that there is no need to evaluate E(y) wiTn calculating Ilk since E(y)

cancels out.

It can be seen that E (tY)-1,(Tt)/T(T) and so

Ey( = 6Iur+s+k -1 T(Tu)du

for any integer k > 0 (Chao and Strawderman, 1972).. The integral in this

last expression can be evaluated with IMSL (1975) subroutine DECADRE.

Thus, the method ofmomentsmight be used to estimate the parameters in (4.1).

It should be stressed, however, that the practical advantages of using

(4.1) are not knpwn.

The second approach to allowing t and 0 to be Lrrelated is to follow

the suggestion of Aitchison and Shen (J980) and replace (3.1) with a logistic
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normal distribution. However, the moments are'not reducible to any simple

form which makes this approach impractical for the problem at hand. For

alternative generalizations .of (3.1t, see the papers cited in Wilcox (1979a) .

The third approach is,to apply Dirichlgt-multinomial to an answer-

until-correct scoring Protedure. This, and other models, is now being

tried out on some real data. The results should be available in the near

future.

6. CONCLUDING REMARKS

The goal in Wilcox (1979a) was to suggest a strong true-score model

that allows guessing to vary over a population of examinees. Another

motivation for kt,model was that there are real sitt;ations where equiva-
0

lent item4:sre assumed (e.g:, Wilcox, in press b), but previously there was

no strong true-score model for handling this, case.

Molenaar has raised some important concerns ab t whether the prob-

lem of guessing has been,satisfactoriIy dealt with. Considerable progress

has been made since my paper was published, but I still agree with him

0
.

that more work needs to be done. The important point of this paper is

that today we have several methods for dpaiing with guessin without

--/g

1

assumingigt is at random. Moreover,. each solution can b empirically
No

checked inseveral ways. Early attempts at correcting for guessing were

based on rather restrictive assumptions, but there seems to be situations

where these assumptions are appropriate. More recent solutions are based

on weaker assumptions, but we need more experience with them before they

are routinely applied. As previously indicated, an empirical investigation

of an answer-until-correct scoring procedure is currently underway which

should partially correct thit problem.
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Abstract k

Most strong true-score models assume that when an examinee does

not know the correct response to a test item, the probability of guessing,

say 0, is independent of an examinees true score. In fact, it is common

practice to make the more restrictive assumption that 8 is the same known

constant for every examinee. One excOotion is theDirichlet-multinomial

model; but true score and guessing are still assumed to be independent.

This paper describes an extension of the Dirichlet-Multinomial model that

allows true score and guessing to be correlated.



2

Consider a multiple-choice test item designed to determine whether

an examinee has acquired a particular skill. An obvious problem is that

an examinee can give a correct response without knowing the answer; yet,

in many situations, it is economically infeasible to use completion items'

in an attempt to correct this difficulty. On the otherhand, guessing can

have serious implications fOr certain types of achievement tests (e.g.,

Wilcox, 1980a, 1980b). Thus,it is natural to search for scoring pro-

cedures and probability models that take guessing into account.

Suppose 4multiple- choice test item has t alternatives consisting

of t-1 distractors and one correct response. Typically, the problem of

guessing is handled by assuming that 0=Pr (correct response 1 examinee

does not know) = lit, i

Chernoff, 1962; Duncan,

.e., guessing is at random (e.g., Hamilton, 1950;

4
1974; Morrison and Brockway, 1979). There are

at least two serious objections to this approach. st, it is unrealis-

tic to assume that every examinee has the same pro ty of guessing.

For example, some examinees might be able to eliminate one or more dis-

tracto4 from consideration without knowing the correct response. In

this case we would expect to haveplit. We might assume 0=1/t but in,

some instances this does not yield satisfactory results (Wilcox, 1980b).

The second objection to setting a=1/t is the implication that true score

and guessing are independent. As argued by Frary (1969), we would expect

this assumption to be false. Of course, if we set B=0, we still have this

problems

Lei be the proportion of skills among aid6main of skills that an

examinee etas acquired and set i=(1-0B. Wilcox (1979) proposed a solution

to the first problem by assuming that, over thOpopulation of examinees

ef
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and y have a bivariate Dirichlet distribution given by

r(v14wev3) -1
(1.0)

( )r(v )r(-1) ) 4 -1

1-1 "2-1 (1-4...0v3
r vi

where v.>0, i=1,2,3 are unknown parameters and)r is the gamma function.

It was also-assumed that the probability of x correct responses for an

examinee taking an n-item test is

(1.1)
1xJ °

(i_e)n-x

where 0=44'y is the examinee's percent correct true score. However, the

second problem remains since (1.0) implies that c and B are independtnt.

The restrictive nature of (1.0) has also concerned statisticians (e.g.,

James, 1975; COnnor and Mosimann, 1969; and Antelman, 1972) but the pro-

posed generalizations of the Dirichlet distribution have proven to be

less than satisfactory. The purpose of this paper is to describe a broad

class of distributions that contains (1.0) as a special case, and whith

allow ; and 0 to be correlated. Our general results are illustrated for

the special case where the marginal distribution of 4 is non-central beta.

Before continuing, however, it is convenient to examine various extensions

of

r(r+s) (1-0)j-1,
(1.2)

,r(r)r(s) °

the beta disiibutibn.

2. A Generalization of the Beta' Distribution

In this, section we describe a family Of probability density func-

tions where (1.2) is "mixed" by a distribution that belongs to a large

class of discrete probability functions. We then indicate how our results /
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might be applied when a particular generalization of the beta density is

used to approximate g(e), the distribution of a over the population of

examinees.

Tpnsider a random variable Y having the probability function,

(2.1) P(Y=y) =
c--Ty

-r)

2 y= 0,1,.......

were T is an unknown parameter; c is a constant depending on y buf`not

T, and 'v is a function of T. Expregsion (2.1) is referred to as a power

series distribution by Noack (1950). There are even more general discrete

distributions that contain the power series distribution as a special case,

(e.g., Patil, 1962; Gupta, 1974), but they are not dis?ussed here since

(2.1) is of sufficient generality for present purposes.

Consider

(2.2) g(e) = E

C4 T
r(r+s+j) er+j -1 _els -1

--0 v(T) r(r+j)r(s)

j-

J

It is readily verified that (2.2) has the properties of a probability

density function, i.e., it is non-negative and it integrates to one. If,

for example, we set c.=(j!,
-1

and T(T)=e-T we get the non-central beta

distribution (see, e.g., Seber, 1963), and, if in addition T=0,(2.2)

reduces to (1.2). The first three-moments of (2.3) are, respectively,

(2.3) pi = 1-sEy( 14.!41 )

(2.4)
v2 s-(s-1)v -(s+1)s Ey( r+s.f-141

(25) 113 = 1/2[2s(s1)(s2) E( 1 1

2s(s-1)(s+1)E
Y

s(s +l)(s +2) Ey ( r+s +2 +y ij

36-
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where E denotes expectation with respect to the density given in expression

(2.1). It can be seen that E (tY)=T(TO/T(T) and so from Chao and Strawderman

(1972) it follows that

f.2.6) Ey
(1

r+s+k -1+y eur+s+k-1 y(tu)dU.

for any integer k > 0. For a detailed derivation of these moments, see

Wilcox (1980c).

Again omitting the tedious algebra, it can also be shown that

(2.7)

where

u = u - [1.1

3
-d ]

4 3 3 1

,di = "1/2-[r+E(y)-2s-s(s-1)(s+1) E( 1

Jr+s+1+y

s(s +l)(s +2) EY( r+s+2+y J d 21'
1

E(y) = TV(T)/''(T), and

d2 = r + E(y) 2(s+1) + (s +l)(s +2) E( ri.sly+2 )

(s+1)(s+3) E(
r+s +y +3

(s+1)2 FE( 1 )
[

r+s+y+3
(s+2) E 1

1

r+s+2+y r+s+3+y

Note that there is no need t6 evaluate E(y) when calculating 4 since,E(y)

cancels oUt.
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Some special cases. To illustrate the results given above, suppose

(2.8) P(Y=y) = ;161!) Ty(1-T) , y=0,1,.:..

where 6>0 and 0 >T>1. In terms of (2.1) we get this distribution by setting

c =r(6+y)/(y!.r(6)) and T(T)--(1-T)-6. Thus, (2.5) becomes

r+s+k-1.1 )Eyf
1. f

t
i
u
r+s+k-1

[(1-T)/(1-uT)) du.

Hence, from expressions (2.3) - (2.5) and (2.7) we have the firs four

moments of g(e).

As another illustration, suppose we replace (2.8) 'with the hyper-

Poisson probability function (Bardwell & Crow, 1964) given by

TY
F1(6,T) r-Osi.y)

2
. where 6>0, T>0 and 1F1(6,T) = 1 + + is a special

case of the confluent hypergeometric series. In this instance

7 r(6 Tj r(r+s+i) er+j-11(1-13)s-/
1F1(6,T) r(a+j r(r+j) r(s)

Setting 7(T)=1-F1(6,T) for fixed 6, the value of E ( is given

by (2.6). Again we can determine the first four moments of g(0) with_

-(2.3)-(2.5) and (2.7).
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3. The Non-Central Beta Distribution

Before describing a model that allows and 0 to be correlated, it

is helpful to consider how the results of section 2 can be used to estimate

g(e). We do this for the case where e is assumed to have a non-Central

beta distribution given'by

OA) 9(0) = 7e-Y r6-1-j+s) er+j-1
e

j=0
,r( j)r(s)

where x>0, r>0 and s>0 are parameters to be determined. As previously

noted, (3.1) is a special case of (2.2). The corresponding marginal dis-

tribution of observed scores, assuming (1:1) holds, is

B(r+j+x, n+s-x)

=0 `

h(x) E
(n+1) B(r+j, s) B(x+1, n+1-x)

j

where B(r, s) = r(s))/r(r+s). We also note that ify is the observed

score on a randomly parallel test having nl items, the joint distribution'

of x and), is

h(x, y) = 101 1n ex (1-e)n-x eY (1-e)nrY g(e) de

e-AX`i

j=0 js

B(r+j+x+y, n+ni+s-x-y)

(n+11-(n1 +1) B(r+j,$) BC-1+x, n+1 -x) B(1+y, n1 +1 -y)

This last result might be useful in the single administration estimate of a

mastery test. (See Huynh, 1976.)

We will need a method of estimating the parameters X, r and s using

the observed scores of a random sample of N examinees. The first step.in

solving this problem is deriving expressions for the first three moments

of the non-central beta distribution. From the previous section we have

-that
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(3.2) 1-se-

From Wishart (1932, p. 445) we see that

ri-s1 kt

fO
't e

1

r+s

e
A

r+s

F(r+s, r+s+1-, k)

F(1, r+s+1, -X).

ON.

Where F is the confluent hypergeometric series given lay

a(a+1)
F(a, b, = 1:E lib c

2!b(b+1)
c
2

+

Hence, we have that

ul
,

r+ss
F(1, r+s +l, -A).

4

Tables and computational procedures described by Abramowitz and Stegun

(1972, Chapter 13) can be used to evaluate F which in turn gives us the-

value 11
1
,or the value of 11

1
can be determined by evaluating the integral

in (2.3) with IMSL (1975) subroutine DECADRE. Note that for k=0 (the

beta distribution)expTession (3.2) reduces to r/(r+s) as it should.

The second moment about the origin is

(3.3) P2 = s- (s- 1)u1- (s +1)s
k

I
1
t
r+s

e
xt,

dt.
o_

/ Finally, the third moment is

(3:4) h f2-sts.1)(s-2) E(
+2

1 + 2s(s-1)(s+1) E (

s(s +l)(s +2)
( ;12.1.j

)

40
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wherd the expectati

A

are taken with respect-,-64- ariable j

c

gif 4

having a Poissbedistri u ion viith'parameter AL.A4ain reTerring to

.Chao and Strawderman (1972)

. t -1 : X
'fe

-
t
ri-s+k-1 eat

d
1-16-114-j

(+s+k)-1 F0, ri.s+k+1,

As before the integral in thislast expression can be evaluated with IMSL

sub,rOutine DECADRE.

It is known (e.g., Lord and Novick, 1968, p. 521) that u,K, the kth

moment 4bout the origin of the true score distribution, is equal to

(2.0 MicinEk) ic=1, 2, n

where
f4

11 [kJM
k

x h(x)
x=0

rj ,

,

.

is the kth factorial-mOment of the marginal distribution,of_observed

scores, andA),'
XLki.x(x-1) . . . (x-10-1).

\
1

Thus, we can use the observed scores of a random sample 'of N examinees-#

to estimate pk with say fik. Substitutinglii, p2, p3 forup u2, v3
A

A.
respectively in equattons (2.3), (2.4) and (2.5) and solving for r, s and

X yields estimates of these parameters say r, g and I.

At present, the solution to these equations is being obtained using, L

numerical analysis techniques. In particular, we used, subroutine ZSYSTMnumerical

'to sone pi and u2 for r and s using a fixed value of A. As initial esti-

mates of r and s we set X.0 in which case explicit estimates of r and s
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are availabe is indicated in the numerical illustration below. With the

jnitial estimate* of r, s and A we

113. If this value is not-iik close

one, laved for r and s, and again

repeated this process'until values

good approximation to.13.

computed the corresponding value of

agreement with U2, weancreased A by

copputed the implied value of u3. We

of A, r and s were found that give a

Numerical illustration. Suppose we have a 5-item test and that fx

examinees received an observed score of x, the values of which are summar-

ized in Table 1.

Table 1

Observed Frequenciei on a 5-Item Teit

x: 0 1 2 3 4 5

-fx
: 23 19 33 15 6 4

1/

The first three moments of-the true score distribution Were estimated to

.be .652, .458 and .339- respectively.
UA

Setting X.0 and using the method of moments, imate r and s with

(ui)2- (1 -ui)

r =
)12- U?1

()-U )2
g

u2 u1
-1

1

. (e.g., litlynh, 1976; Wilcox, 1977) yielding il="3.91 and i=2.04. From ex-

pression (4.5), or from standard results on the beta distribution, these

values of r, s and A imply that p3=.346, but as previously noted, the esti-

mate, of y,as .339. Therefore, we increased A to 1 and solved (3.2) and

(3.3) for and s with IMSL (1975) subroutine ZSYSTM yielding f'=3.2876 .

....:-//
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and g=2,2149. From (3,4) it follows that p3=.3389a. Thus, these values

of r, s and x are in reasonably good agreement with the estimated values

of up u2 and 113. If (3.4)hadyielded a number for u3 greater than .339,

we would have, increased X from 1 to 2 and repeated the process.

4. 'Extensions to theDirichlet-Multinomial Model

In this final section,te use the results of t e previous two sections

to extend the Dirichlet-multinomial model so as to a ow c and 0 to be

correlated. First, a brief review of this model is in order.

Consider a single examined responding to h dichotomously scored items

randomly sampled from some item pool. Let x be the examinee's number

'correct score, y be the number of items th'examinee knows and z be,re

number of items that the examinee does not know but guesses the correct

response. Let c be the proportion of items in the item domain that an

examinee knows and.let 0 be the probability of guessing the correct re-

sponse-given that the examinee does not know. It follows that y and z

ave a multinomial probability function given by

n!
Cy

yz (1-4-1)n-z-Y
,y! (n-y-z)

where Y=.(1-00. As previously mentioned, Wilcox 1979) assumes that c

y have a bivariate Dirichlet disEribution given by (1.0). The model

contains the beta-binomial model as special case (when 0=0) and so in

terms of applications, it has all of the appealing features of the beta-

binomial model that are described by Lord.(1965). An added, advantage is
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that the model allows guessing to vary over the population of examinees.

In some cases latent structure models can be used to estimate ; and a

for a specific examinee which in turn makes it possible to apply it to

real data. (SeedilCinc,-1979, for further details.)

The form of the noncentral beta distribution suggests a generali-

zation of (1.01 More specifically we consider replacing (1.0) with

r(v -1-v 4-v +j)

g(;, y) = E (e-A a3 /j!}
1 2 3 v "2-1

j0 2 3
ti) r(v ) r(v )

v+j -1

(1-;-Y)"3

It is readily verified that (4.1) is a probability density function. Note

that if X=0, (4.1) reducet to t e trichlet distribution and so we expect

it to give as good or better an ipproximationito the joint density of ;

and y..

From known results about (I.0) allows that the marginal densities

of ; and y are non - central, beta distributions given-by

e-a,r 1v102+v3+i) 1_0)2+ v 3_1
(4.2) 91(0 - E

r v +j) r(v
2
iv

3
)

j=0 J*

and

e-lAi r(v102-0)3+j) t)
2
-1

(4.3) 92(Y) = E

J.1 t
r(v

2
) r(v

1
-iv 4j) Y

j=0

From results given by Ishii and Hayakawa (1960 -it can be deduced that

the marginal distribution of y and z is

(4.4) P(Y, ).=
j=0

B "1+ +" n+v3- -z
v +j 'v

1 2 3

where Bfa, b, p) = [r(a) r(b).r(c))/r(a+b+c).
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The density of x=y+z is

, %/1.
f(x) = e "

B(vo-v2+j-i-x, n+v3-xl

j=0 ji
(n+1) B(vi+v2+j, v3) B(1+x, n+1-x)

and tie joint distribution of x and ; is

(4.5) P(x, = E
txj J;

1

u(vy30,2,v3).

1

[I

co

E (>4 B(w+v2, n-X-1-A, ) 4X-w+vi+j-1 (i_on-x+Wi-v

W=0 3

'Finally, following Wilcox (1979),

. . -.),

A
J

(4.6) E( x)
fix) (x) - , j! B(v

1
+j,v

2 ,V 3)

1 ,, n ,. . /--

i0

CO

() 2 ' 3 I 2 2
x B(w+v n-x+v ) B(x-w+v +j+1 n-x+w+v +v )

Thi appealing feature of (4:1.) is that unless it. reduces to a Dirchlet

distribution, ; ands are correlated if the distributions of ; and y are

assumed to be continuous. The proof of this statement follows from a re--

suit given by Darroch and Ratcliff (1971). In particular, as a special

case of their theorem 2, if the probability density function of ; and y is

continuous, the independence of; ands implies thatg and y have a Dirchlet

distribution.

Numerical illustration. Data collected by the Maryland State Depart-

ment of Education is used to illustrate the modified Dirichlet-multinomial

model. In particular, we use the test resulti on students taking 'a pre-

litninary form of a proficiency test in mathematics. The test, consisted of

thirty skills with three items per skill for a total of 90 items on the test.
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We could use the information on all three, items associated with each skill

to obtain an averaged estimate of 4 and &for each examinee, the average

being defined in the sense described by Harris and Pearlman (1978). How-

ever, since we merely want to illustrate /he calculations involved in

applying the model, we simply ignore the information on the third item.

For a specific examinee, we summarize the observed responses as shown

in Table 2 where a 1 designates a correct and'a 0 an incorrect response.

Table 2

Observed Frequencies for, an Examinee

Item 1

0

Item 2

1

=x11

e.

x
10

x
01 x00

sj

For example, x10 is the number of items the examinee is correct on the first

item of an item pair and incorrect on the second.

Following Wilcox (1977) we estimate 4 with ,

,,x01,4- x00 xio xDO 1,

[ x00. j ,n

If
-u
x-

0
=0 we set dequal to x11 /n and if Z<0 we estimate 4 to be zero. As

for we use A =
x
10

X
10

+ X
00

If x
10

x
00

= 0 we set A = .25 If A > .5 we estimate 0 to be .5. We

note that here, 0 represents the probability of guessing the first item

in the item pair; the probability of guessing for the Second item does not

enter into the calculations.

el 6



The values of ; and 0 were estimated using the test results on 2,000

examinees randomly sampled from the total number,of examinees available. -

The 2,000 estimates were then used to compute the first three sample

0-
morgentsInf ; which were found to be .652, .496 and .405, respectively.

Since the marginal distribution of ; is non-central beta, we can use

the methods previously described to estimate vi, v2+v3 and A where v2+v3

corresponds to the parameter s in section 2. The estimates are 1.2231,

.83942 and .5, respectively. Next we computed the first *ample moment of

which was .1287. Since y is assumed to have a non-central beta distri-

bu on, it follows that the mean of y is

7 1 3
jai

'eX
dt

Substituting .1287 for
'

1.223 for v
1'

2.062 for v
1
+.1)

2
+1)

3
and .5 for A

and solving for v3 yields G3=1.279. Thus, estimates of vi,v2,v3 and A are

G1=1.2231, G2=.83942 - .1279=.7115, Gr.1279 and £ =.5.

An alternative extension. Fora specific examinee and a randomly
.

chosen item,_let a=Pr (incorrect response I examinee knowi). We conclude

this section by indicating that, to a certain extent, the Dirichlet,-

multinotial model can be extended to include the possibility of a>0. If

we allow a>0, an examinee's per9ent correct true score is e = (1-a);+B(1-0.,

Let y1=0(1-a)-a; in which case 0=0T1. As long as 0>a, we have that

0 < < 1, 0 c ii$ 1 and 0<o. y1 < 1. Thus, it is theoretically permis-

sible to assume ; and yi have a bivariate Dirichlet dtstribution,,or more

generally, their joint distribution is given by (4.1). Moreover, the

parameters ofthe model can be estimated in essentially the same manner as

outlined above.
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ABSTRACT

Wilcox (1980a) pf.oposed a model for an answer-until-correct scoring

procedure that solves various measuretffent problems. The purpose of this

paper is to empirically check an implication of the model, end to, pro-

pose and investigate some strong true-score models. One of the strong

true-score models assumes the probability of guessing the correct response

to an item is a strictly increasing function of an,examinee's ability

level, and the model gives a reasonable fit to the data. The paper illu-

strates that this new model is easily applied to situations where the

beta binomial model is typically used. The other models,. including the

Dirichlet-multinomial model, proved to be unsatisfactory. Finally, pe-,
tential difficulties with the new model are diScussed, and possible direc-

tions for future,research are described.

1
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1. INTRODUCTION

-

2

Wilcox (1980a) prdposed a model for an answer-until-correct scoring

procedure that solves various measurement problems. In particular, it

el can be used to test whether guessing is at random, to measure hoW "far away"

guessing'is from being random, and to correct for guessing without assuming

, guessing is at random.. More recently, Wilcox (1980b) described six other

measurement problems that the model can solve. One problem was to empiri-

cally determine the minimum number of distractors needed on a multiple-choice

test item. Another can be described as followS: for a randomly selected

examinee, let c be the expected number of items on an n-item test for which

we correctly determine whether the examinee knows the correct response. How

many examinees do we need to sample so that there is a reasonably high

probability of correctly determining whether c has a. value above or below

some known constant.

Two types .of guessing were considered in Wilcox (1980a) The first,

or Type I guessing, refers to situations where we have a population of

examinees and a single item. For a randomly sampled examinee, the pro-

bability of guessing is defined to be the Pr(correct response I examinee

does not know). Type II guessing is defin&I in terms of a single examin-e-

and a domain of items. In particular, it,is the Pr(correct response I

examinee does not know) forua randomly selected item.

*In Wilcox (1980a), it was assumed that an examinee either knows the
.9P

correct response and answers the item correctly, or the examinee can elimi-

nate at most t-2 distractors where t is the number ofdistractors on

the item. According to an answer until-correct scoring procedure,

examinees choose distractors until the correct 'response is identified.
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Assume Type I guessing, bete proportion of examinees who know

_the item, and let yt=0,...,t-2) Ise-the proportion of examinees who can

eliminate i distractors. Following Horst (1933), we also assume that

exarinees who do not know guess at random from among the distractors

they cannot eliminate. Thus, the probability that a randomly chosen ex-

aminee chooses the correct alternative on the first attempt is
' 4

t-2

Pi 1= E
i=0

The probability of giving the:correct response on the ith attempt is-
-

t-i

P-
/

= E
0

./(t-j)
'-

,

(i.2,...,t)

In order for the model tó hold we must haye

P1-1 P2 Pt
4 (1.3)

Equation (1.3) can be empirically checked (Robertson, 1978). Moreover,

maximum.likelihood estimates of the pi's are easily obtained when (1 3) is

/assumed by applying the "pool- adjacent - violators" algorithm (e.g. B

et al., 1972, 'pp. 13-18) which in turn yields maximum likelihood e

low,.

imates

of the 4's. In particular, if in a random sample of N examinees, x
1

exam -

inees choose, the correct alternative on the first try, and yexaminees

choose the correct alternative, on the second try, then

.

= (x1 - x2)/N,

= 0,

C

x1> x2

xi < x2

is a maximum likelihood estimate of (For alternative methods of

(1.4)

scoring and analyzing answer-until:-correct tests, see Dalrymple-Alford,

1970; Brown, 1965.)



There are two Min goals to this paper. The first is to empirically

,

,

check the assumption in equation' (4.1.3) for a reasonably large number, of
4, 4

i
,.

tems, and the seccind is to propose and to empirically investigate some--
"

#

strong true-score models based on an answer- until- corrects ring procedure.

We note that the importance of strong true-score model has long been esta-

blished (e.g., Keats and Lord, 1962; Lord, 1965, 1969; Lord a Novick,

1968), and more recently the played an important role iwthe realm

of tcriterion-referenceetesting (e. , Huynh, 1976, 1980; Wilcox, 1977).

As no

2. EMPIRICAL TESTS ,0 EQUATION (1.3)

above, our first goal' is to empirically determine whether

equation 11.3) is reasonable when an answer-until-correct scoring procedure'

is usect.0' To do this, we used' test results on -020 students enrolled in

an, undergraduate psychology course. Each student took three tests during

the semester. The first two tests had 37 and 40 items respectively, and `
r 146

40

the, final exainidatron had 40 items. All three, teens had four forms' and

11 items .had t=5 distYactors. Each form. consisted of the same items,

.but they were presented in a differentorder. Using results_ in-.Robertson-
. -

(1978), a test of equation (1.3) wa,smade for all 117 items. Each item

was tested four times according to which test form it was on. Thus,

total% of 468 tests were made.

,Atothe .01 level 'of significance, the null hypothesis was rejected

about 5.8 percent of the time., FOY' a little over half of the tests' it was

/lunnecessfry to apply bertson's procedure because the sample estimates

orthe pi's already satisfieethelinequality. When Roberisonr-s test was

applied,,the results wer.e usually ohighly nonsignificant., The observed -
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test scores indi6te that therewere two items during each testing period .

(six items in all) which did not satisfy equation (1.3).

Table 1 shows the observed scores on one of the items on the final

examination that appears nod to sktisf(1.3). On Form 2, for example,

35 examinees chose the correct response on their third attempt. of the

item. For all four forms, Robertson's test.was highly significant. The

striking freature of this item is the large number of examinees who chose

the'correct response on their last attempt. One possible explanation is

that examinees had misinformation relevant to the question being asked,

andso they eliminated the correct response from consideration. Unfortun-

ately, there was no way to verify this.

Several of the items for which the null hypothesis was rejected had

a response pattern similar to the one shown in Table 1. That is, the

correct response was usually chosen last. In,another instance where the

null hypothesis was rejected, the observed frequencies corresponding to

the number of attempts were 20, 49, 33, 30, and: 18 respectively.

3. StRONG TRUE-SCORE MODELS

Vit Next we consider the problem of finding a strong true score model that

can be used in conjunction -with an answer-until-correct scoring procedure. -

..In contrast to the previous section, only Type II guessing is considered.

We begip by considering a single examinee responding to items that repre-

sent a particlMar item pool. Lel :r be the proportion of items the exam-

inee knows, and let Ti(i=0,...,t-2) be the proportion of items for which

the examinee can eliminate i distractors when the correct response is not

knok. Finally let 8.0=1,...,5) be the probability of choosing the cor-
J

rect response on the jth attempt of a randomly selected item. The situation_
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is essentially the same as in the previous section, but the roles of

items and examinees are interchanged.

-For future reference, we note -that

t-2
e T E T./(ti)
1

i=0 1

and

(3:1)

t-i.

e = z T./(t-J) (3.2)
1 J=0

Let and y2 be the number of items on an n-item test for Which the

examinee chooses the correct response one first, and second attempt,

respectively. In Wilcox (1980a) it was assumed that the joint conditional

probability function of y1 and y2 is given by

(.),
1'

y2 1

rflelY 1 e2 2 (1-8
1-8 2

)

n-y -y,
4

Y11 321 (r1-11-12)1
(3.3)

This implies that f(y1I81) is a binomial prgbabil4ty function which, in

mental test theory, has certain theoretical disadvantages. In practice,

however, this assumption frequently` gives good results. A recent discussion

'of the issues can be found in Wilcox (1981).

Note that for the model to hold, wemust have

e > e > > e
1 2 t

and so a maximum likelihood estimate oft is

= (yl-y2)/n, Y1
y
Y2

Y1 Y2
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The goal in this section is to consider how we might-extend (3.3)

to a pdpulation of examinees. Wilcox (1980a) suggests that for a pop-

ulation of examinees, we assume the%oint density of el and 02, or the

joint density of z and 02 belongs to the Dirichlet family. For the

:Former case, theejoint- density is,given by

r(Vi+VeV3) N, -1

§(e 02) Zkyl)r(V2)r(V3) ell 022 (1-01-(01371r (3.4)

where v..
1,

v2', v
3
> 0 are unknown parameters. In the latter case we simply

replace el with equation (3.44 The motivation foe(3.4) is that it

<- is the bivariate analog of the beta density which has proven to be useful

in many situations in mental test theory (Wilcox, 1.981).

Empirical Results on the Dirichlet-multinomial Model

For the reasons given above, we began by assuming (3.4), and we then

tried to fit the Dirichlet-multinomial model to the final examination

test scores previbusly described. From results in section 2, two of the

forty items appear not to satisfy the assumptions made under our answer-

until-correct scoring procedure and Type 'I guessing, and so they were

eliminated. The observed.m 1 distribution of yl and y2 for the

remaining 38 items is shown in Table 2. 4

It is known that when (3.4) is assumed, the marginal-density of el

0. beta with parameters vl and v2-1-v3. We tried fitting the observed yi's

beta-binomial probability function (e.g., Keats and Lard, 1962). The esti-

mates of v
1
and v

2
-1-v

3
were 8.645 and 8.2, respectively. The expected frequen-

cies under the model are shown in Table 2. A visual inspection of Table 2
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4=

,suggests that the beta-binomial model gives a reasonable fit to the data

and a chi-square goodness-of-fit test (Cochran, 1954) nfirms this.

Net we con sider the observed frequencies corresponding to y2. If

(3.4) is assumed, then the marginal probability function of y2 is

r(v1 +v2 +v3) r(yev2)r(n-l-vi-Ev3-y2)
f(y2) (312 r(v2)rcyl-i-v3) r(nivii-v2+v3) (3.6)

i.e., a beta-binomial density with pai=ameters v2 and The estimate

of v2 was 25.6, and the estimate of vi-l-v3 was 101.6. Again a good fit to

the data was obtained. However, the estimates of vi, v2 and v2-1-v3 imply

that v
3
must be negative. But the Dirichiet- multinomial model assumes

vi>0 (i= 1,2,3). We tried instead to estimate the vi's as described in

Mosimann (1962). This yielded y6.08, ;.12=2.37 and ,3=3.39: We now have

admissible estimates of the v.'s, but the, fit to data s no longer satis-

factory. Evidently, some other model must d to explain the observed

scores.

Before describing a model that gives .a reasonably good fit to the

data, we might mention two other models -,that were consideredrbut which

gave unsatisfactory results. The first was a negative - multinomial model

Sibuya et al., 1964), and the second was a compound negative multi-

nomial model also known as the multivariate inverse Polya- Eggenberger

distribution (Mosimann, 1968; Sibuya, 1980; Sibuya and Shimizu, 1980;
4

Janardan and Patil, 1971).

A New Strong True-Score Model

Since a beta-binomial model gives a good fit to the observed marginal
P

distribution of yl, we decided to assume (3.3) holds and that el has



beta density with parameters 8.645 and 8.2. The problem is to find a

reasonable relationship between el and 82 that accounts for the observed

marginal density of y2. As noted above, the Dirtchlet-multinomial model,

as well as two other models, is unsatisfactory for accomplishing this

goal.

Our common sense notion is that as T increases, the probability of

guessing the correct response will also increase. For instance, an ex-

am-Mee with a value for T close to one might-have more partial information

than an examinee for whom T is small. That is, examinees with 7. close

to one/might be able to eliminate more distractors when they do not know

as opposed to examinees for whom T is close to iero

(in press) has also argued for this point of view.

moment that this is true, and consider how we might

. We note that Molenaar

Let's assume for the

express this relationship.

After looking at the data, w6bdecidep tb express the assumed rela-

tionship between T and guessing it'll-term of the conditional distribution

of y2 given yl. First note that for a specific examinee

fil-Y1 11 82 Y21 -e
n -y1y2

2

f(Y2IY1' °I, 02) I
I-I (3.7)

Y2 t 1
1-8

1

tar notational convenience, let t=e2/:(1-Y: ciurtddumption about T and

guessing indicates that for the population of examin'eesi is. an increasing ,

funCtion of 81. Since 0<0 <1, :hat we need is an increasing function that maps1
the closed unit interval into a subset of itself. One way to do this is to

use a linear function of a cumulative distribution defined on[ 0,0 The beta

distribution'is the best known distribution with this property, and so

we decided to consider it for the problem at hand. Accordingly, we assume



that for the population of examinees, E(c( ) is given by

(e1) ) = cfel r(
i's) u

r-1 (1-u)
s-1

du(+ e
r)r(s) (3.8)

where c, e, r, and s are unknown positive constants to be determined,.and

where 0<c+e<1.

Henceforth, we assume 02 is ,completely determined by el according to

equation (3.8). That is, for a specific examinee,e2=(1-01)(031). This is,

no doubt, an over simplification of reality, but we want to avoid deriving

a model so mathematically complex that it cannot be applied. As it turns

out, eqUation (3.8) gives a reasonably good fit to the data.

`-"itiext we determined c, e, r and s in the manner described in the

appendix. The results were C=.25, e=.25, i=1.776 and i=2.279.

As a,partial check on the model, we decided to compare the expected

observed scores of y2 to the values actually observed. To do this, we

need an expression for the marginal distribution of y2 assuming equations

(3.8) and "(3.3) hold, and that el has a beta dAsity with parameters 8.645

and 8.2. Writing (01) simply as and since e2=E(1-91) equation (3.3) can

be written as

f(yry2le1) = n!eiYi.co(1-ei)] Y2

and

t(1-e2)] n-YrY2 (3.9)

n! C2 (1-8 [: 1-t(1-010 n -y2

f(Y2181) y2!(n -y2)! (3.16)

Substituting (3.8) into (3.10), multiplying by g(81), and integrating out

g(01) yields the maginal density of y2. Symbolically,

f(y = la f(y 10 ) g(0 ) e
2 1 1

(3.11)

61



where, from previous results, we. assume

r(16.845) 87.645 IL.. 17.2
g(el) r(8.645)r(8.2) 1 '1'

11

(3.12)

and f(y,lai) is given by (3.10). Since g is a function of el, it is dif-
4 I

ficult to find a closed form expression for (3.10. HoWever, for practi-

cal purposes, this is not a serious problem since the integration is

easily accomplished using numerical quadrature techniques. We used the

IBM (1971) subroutine DQG32. For those who do not have access to this

subroutine, the necessary formulas can-be found in Stroud and Secrest

(1966). The expected scores of y2 based on (3.12) are shown in the last

column of Table 2. The usual chi-square statistic was found to be 22.9.

With 12 degrees of freedom the level of significance is between .025 and

.05. Note that e is assumed knOwn, as is explained in the appendix,

and so (3.11) has three unknown paramenters since (3.12) is assumed.)

We observe that the estimates of g corresponding to y1=4, 7 and 33

are based on a relatively small number of examinees. In fact, far y1=4

there is only one examinee and the same istrue.for y1=33. Thus, it might

be that is unusually spurious at these points, and this would explain

why we get estimates of t that seem to be relatively inconsistent with

the notion that t is a strictly increasing function of el. (See Table A2

in thj appeni0x.)
V

It is interesting that if we ignore the estimates of t at these

points, we get C=.33, re .88 and i=.909 with e still equal_to .25. In

this case the value of the chi-square statistic is 15.63 and the level

of significance is between .05 and .1. In either case, we get a reason-

able approximation to the data. Note, however, that if we assume random
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44,

guessing, i.e., g = (t-1)-1 = .25, as is frequently done, we get a very

poor fit to the data.

Next we applied the model to the observed scores on the second test

taken during the semester. We used the same 620 examinees. Again, two

of the forty items did not satisfy (1.3), and so they were eliminated.

The parameters of our strong true-score model were estimated and found to

be very similar to the estimated values based on the final examination.

Also, 4 again got a reasonable fit to the data.

Before concluding this section we note that the above results suggest

we estimate T with :i=61-82=61-(1-61)g. If we arbitrarily set g=(t-1)-1,

we get the usual correction for guessing formula score.

4. SOME APPLICATIONS TO MASTERY TESTS

In many instances it is a simple matter to extend existing applica-

tions of the beta-binomial model to the model described in section 3. By

way of illustration, we consider two problems that occur with mastery

tests.

A frequent goal of a mastery or criterion-referenced test is to sort

examinees into one of two mutually exclusive groups. In many-instances

these groups are defined according to whether an examinee's true-score

T is.above or below some known constant, say To. In'the context of an

answer-until-correct scoring procedure, we decide that T > To if for the

examinee being tested, (y1-12)/n > To; otherwise the decision T <Jo is

made.

For a randomly selected examinee, the probability of making a correct

decision about whether T is above or below To is given by

Pr(y -y2>EnTO, TIT0)+Pr(y1 -y2<EnT031T<T0) (4.1)
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where [ nTo] is the smallest integer greater than or equal to nTo. But

(4.1) is equal to

Efal f(y1,y2101)g(el)del u;)c) ftyl,y2[61)g(el)do1
)

where,the first summation is over all (y1, y2) such that yo2 2EnT0:1,

the second summation is overall (yl,y2) such that yl-y2<[ nTo]and oo

is the value of el such that 611-(1-61
1
)t=T

0 . Thus, the probability of a

correct decision'"can be determined once (3,8) is estimated.

Another approach to characterizing mastery tests is the single admit-.

istration estimate' of the proportion of agreement., We are

given the observed scores of N examinees, and we want to estimate the

probability that a.randomly selected examinee'would be classified in the

same manner if he/she took two randomly parallel tests.

Let z1 and z2 bp the observed scores corresponding to y1 and y2 for

an examinee who takes a randomly parallel test. Proceeding in a manner

similar to Huynh (1976), assume thd density f(z1, z21e1) has the same form

as f(yry2181) which is given by (3.9). Thus,, after making the appropriate

independence assumption, the joint density of y
1,

y2, zl, and z2 is

f(Y142,z1,z2) = to f(yry2161) f(zi,z2(61) g(e1)del?
.1

hich can be evaluated with IBM subroutine DQG32. The proportion of agree-

t is

Ef(YpY2=z
-e

=z-)
1

where the summation is over all points where both y1 -y2 and zl-z2 are

greater than or equal to nTo, or when both are less than or equal to nTo.

64
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5. DIRECTIONS FOR FUTURE RESEARCH

We briefly describe some of the problems that might occur when using

-the 'strong true-score model proposed in section 3.

First, the assumption that the marginal probability function of:y1 belongs

to the beta-binomial family has yielded good results to various measurement

problems when applied to real data (e.g., Gross and Shulman, 1980;

Subkoviak, 1978; Keats and Lord, 1962; Lord; 1965). However, ap might

be expected, this is not always the case. Keats (1964a) reports a data

set for which the beta-binomial model gives a poor fit, and Keats (1964b)

repOrts several other data sets for which the model gives unsatislavctory

results. Accordingly, we briefly outline solutions that might be consi-
-",-

dered when the beta-binomial model is unsatisfactory. The'details are

left for future investigations.
s's

First we note that when trying to,find a probability function that

gives a good fit to data, three of the best known and most frequently

employed distributions are the binomial, Poisson and negative binomial.

Of course, the Poisson distribution usually gives good results when applied

to situations where a particular event occurs infrequently. Also, the

negative binomial distribution is often-the first choice when it is be-

lieved that the Poisson- distribution might be inadequate (Johnson and Kotz,

1969, p. 125).

Suppose we replace (3.3) with the assumption that for a particular

examinee, the probability of z=n-y1 is

f(zjy) = e 1 y/z1 (z=0,1,...) (5.1)

i.e., a Poisson density with parameter y. If we also assume y has a gamma
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distribution for the population of examinees, the marginal distribution of

z is negative binomial given by

f(z) taaz_11J,-19(k) (5.2)

where a and 0 are unkriown parameters. As noted In Wilcox (1981), this

distribution gives a reasonable it to the data reported by Keats (1964a)

while the beta-binomial modeldoes not. We also note that Johnson and 6

Kotz (1969) list several techniques for estimating the parameters in (5.2).

One problem is how to represent the joint distribution of y2 and z.

A mathematically convenient approach is to assume y2 is also Poisson and

that z and y2 are (conditionally) independent. To allow z and y2 to be

correlated, we might use the bivariate Poisson distribution derived by

Holgate (1964).

In principle, at least, a gamma-Poisson model could be applied, and

an estimate of E could be derived. However, if test scores are highly

skewed, as they are for the data in Keats (1964a), we might get poor

estimates of F for examinees with low ability because there are so few

examinees with low ability. Hopefully the seriousness of this problem will

beinvestigated sometime in the futute.

Rather than assume y has a gamma distribution, we might assume it

has a. gamma product ratio distribution in which case the marginal proba-

bility function of z is

f(z) = T+00r(04-0
(a)z (a)z

r www)r(w) zqa+ow)

66
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where a, s, w>0 and

(a)z=1, z=0

a(a+1)...(a+z-1), z=1,2,...

(Sibuya, 1979). The distribution (5.3) is known as the inverse Polya-

Eggenberger, the generalized Waring, and the negative binomial beti.

The last term is sometimes used because if f(zfy) is negative binomial

with parameters a and.p, and if p is beta with parameters w and 0, the

marginal distribution of z is (5.3).

The, rth factorial moment of (5.3) is

p = E(z )

= (a)r(Ori(w-1)(r)

where a(r) = a(a-1)...(a-r+1).

We can estimate w by td method' of moments by noting that

and

12
212

p1 i

p -
P

p + a + (3 +

11p

Pl]ta

313

12 11
2a + 20 + 4

The values of a ands can then be determined via the estimate Allui and 12'

\-We note that. Irwin (1968) reports some real data for which (5.3) im-

proves upon the fit obtained with the negative binomial, but the improvement.

is not overly striking.

67 -A
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0

As for the joint distribution of z and y2, we might use the multivariate

analog of (5.3). (See, for example, Sibuya, 1980A Once a is estimated,

results in Mosimann (1963) can be used to estimate the remaining parameters.

6. CONCLUDING REMARKS

There are two main points to this paper.. First, Wilcox (1980a) made

certainaassumptions about how examinees behave when responding to test

items according to an answer-until-correct scoring procedure. These assqmp-

(
Mutions imply that the cell probab)lities in a ltinomial distribution must

satisfy a particular set_of inequalities. The data used in this study

suggests that these inequalities will frequently hold.

The second point 4s that a strong true-score model was posed that

allows the probability of guessing the correct response to vark over a

population of examinees. In particular, it.was assumed that the robability

of guessing correctly is a strictly increasing function of an eCajninees

ability level. Furthermore, the model gives a reasonably good f' to our

data, and it allows us to correct for guessing wi t ass guessing

is at random.

Finally, we have outlined some of the potential dif iculties with our

proposed model. Hopefully these issues will be resolved sometime in the

future.

0-
g I
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APPEND11

The prgem ls to derive an estimate of the parameters iA equation

(3.8). To motivate our Ulution, we first rederive the estiMaIpof the

true score'distribution gsed,by Lord and Novick (1968, chapter 23). The

paint is that der6ation is done in slightly Clifferenefashion_than

is customary. \.e then apply this same technique to obtain an estimate

of g as a function of al..

18

Suppose that on an n-item test, obsetved scores for a specific exam-
.

inee h4ve a probability function given by

1 f(x17)7
"

_X(1:0nX
x

f=7

"For a population Of examinees, let g(w) be the density of IT, and suppose,

we want to esVmate the first two moments of IT. One approach to this prob-

lem is as follows: Let xi (i=1,...-,N) be the observed scares of:N randomly

sampled examinees, and let f
x
be the number of examinees with an observed

x where, of course, zf =N. Temporarily assume that every examinee's.true

score 11. has onefof nil possible values; namely, iri=i/A (i=0,.;.,n). The

observed values of x suggest that we have sampled f examinees witri true
x

score i/n., Thus, an estimate of the probability of choosing an examinee

r"-sw. having true score
1

Ir.
1
is b(w.)=f

x
/N. Sihce ;-=x./n is an unbiased estimate

-a 1

of IT for the ith examinee, an estimate of E(w) is

n fx N x.

h(w.) = E = E

.=01' 1 'r/ 144 i=1A u

Since n
-1

(n-1)
-1
x(x-1) is an unbiased estimate of r2, this suggests, iOr

, .

similar reasons, esthat we estimate E(r2) with
6 A

N' -x.
.s.

N
-1 i 1

1=1
41(h-1)

.

.E.

69
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T1se estimates of E(7r) an4-41.2) are the same as the ones dirived in

Lord and Novick (1968). If we now assume g(1) belongs to the beta family,

we have their estimate, of tMe true score distribution.

In this paper we assume that e
1
com P leely determines and that .

g is given by (3.8): Temporarily assume that e
1

is discrete, and that its

possible values are i/n (i=0,...,n). Suppose we want to estimate the

value or g for the possible- values of el. We do this as

follows.

For notational convenience let y=y1, and suppose fy examinees gel?y

items correct on their first attempt of an item. Thus, we would estimate

that fy examinees have el=y/n. Let h(y21y1) be the number of examinees who --\\

get y2 corrects on the second try of an item given that there weresy items

for which the examinee chose the orrect response on the first try. Finally,

- let

t =
(n-y)h

yilty2(Y)

Y2

where h= E h(y91y). Then t is an estimate_nl, when el=y/n.
r Y2 '

We illustrate the calculations-using a specific case from the data

reported in the paper. Consider y=11. The corresponding y2 values for

whichif(y21Y) is positive are y2=8,9,10,11,13 and 14.- The frequencies

(the values of h(y2fy)) were 4,6,1,1,1,2, respectiYely. Thus, h=14.

Since there are n=38 items,, we would estimate (11/38) to be

139/((38-11)(10)=.36.

Table Al shows the estimates of g(e1)-fo.sthe final examination test

scores used in the pap6r. The values of suggest that g is indeed an

increasing function of or but occasionally g decreases. According, we

7t)



20

applied the pool-adjacent-violators algorithm (Barlow, et al., 1972,

/ pp. 13-15.) tdestimate_E under the assumption thatlit is a nondecreasing

ti
function of e1. The results are reported in Table Al as E.

Since there are t=5 distractors for every item on the test, and since,
/

for a specific examinee, E is the probability of a correct on the second

try when the examinee is incorrect on the first try, the values of E sug-

gest that examinees with low ability are guessing approximately at random.

We decided in advance to set e=(t-1)-1=.25, and the data suggests that

thistls reasonable. Based on Table Al, we also assume that the upper value

of E is .50, and so we set c=.50-e=.25.

There remains the problem of estimating r and s. First, since E is

assumed to be a strictly increasing function of el, we Cann muse the same

estimates of E forNtwo distinct values of el. Suppose b11 (i=1,...,m) are

m points where the estimate of E (the value of E) is the same. For the

purpose of estimating r and s, we replace the points eli

-1
m. zeli.- For example, in Table Al, we have that E=.305 at 61=:24 and .26.

Thus, instead of using the two points e1 =.24 aol .26, we assume E =.305 at

81=.25, and that a value of E at e1=.24and .26 is not available. The

resulting values of e
1
alid the corresponding values of E are shown in

1F

Table A2.
Ak/

-pisNext set n= (- .237/. and note that n=fel rrs)
w
r-I (1 -Idu.

o r (s)

The value of n corresponding to the values el are summarized in Table A2.

They give us a step function approximation to an assumed cumulative beta

distribution. Thus, by, calculating & mean and variance of this step func-.

tion, we can estimate r and s (e.g., Lord and Novick, '1968, chapter 23;

Wilcox, 1977). For the data used here, the estimates were -r=1.776 and

i=2.279, respectively.

71
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TABLE 1

Observed Frequencies for an Item Nt:;t Satisfying (1.3)

Number of Attempts

.41.-

Test
Form

1

2

3

4

`1 2 3 4 5

19

16

13

13

21

22

11

24

35

33

42

36

30

24

14

57

51

'67

52

F

21
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TABLE 2

Observed and Expected Scores on the Final Examination

Score

Observed
Frequency
of y1

Oberved
Frequency
.of y2

Expected yl

when yi is
bebi '

(8.-645, 8.2)

'Expected y2

when y2 is
bebi

(25.6, 101.61)

Expected y2

-When

c=e=.25
r=1.2776
s=2.279

0 0 2 .00
-,

.37 .62
1 0 5 .02 2.67 3.66
2 0 10 .07 9.56 11.72
3 0 24 ,.20 .23.19 26.72
4 1 -34 .48 42.78 47.55
5 .e 5 . 51 1.00 63.98 69.63.
6 '6 90 1.87 80.60 86.30
7 9 85 3.20 , 87.85 92.26
8 4 90 5.08 84.26 86.12
9 14 75 7.58. 72.30 70.93
10 19 64 10.71 56.00 51.89
11 25 46 14.44 39.4 33.91
12 26 25 18.67 25.48 19.84
13 34 7 .___/ 23.22 15.13 10.48
14 26 7 27.87 8.31 4.96 ,

15 34 3 32.37 4.22 2.17
16 43 1 36.43 1.98 .87
17 42 1 39.79 .87 .31
18 46 0 42.22 .37 .12n 41 0 43.54 .12 0.00
20 45 0 43.63 .06 0.00
21 46 0 42.51 0:00 0.00
22 40 0 40.25 0.00 . 0.00
23 38 0 36.97 0.00 OM
24 28 0 32.94 0.00 0.00
25 25 0 28.41 0.00 0.00
26 19 0 23.66 0.00 0,00
27 27 . 0 18.97 0.00 0.00
28 13 0 14.59 0.00 0.00
29 11 0 10.72 0.00 0.00
30 6 0 7.48 0.00 0.00
31 4 0 ( 4.90 0.00 0.00
32 6 0 3.00 0.00 0.00
33 1 0 1.68 0.00 0.00
34 2 0 .84 0.00. 0.00
35 1 0 .37 0.00 0.00
36 0 0 .13 0.00 0.00
37 0' 0 .03 0:00 0.00
38 0 0 .00 0.00 0.00

Explanation of notation,yi is bebi b)meansy, has a beta-binomial
density with parameters a and b. 73
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TABLE Al

y1 61=Ylin

4 . .11 .23 .298
7 .18 .41 .298
8 .21 .26 .298
9 .24 : .32 .305
10 .26 .29 .305
11 .29 .36 .355
12 .32 .35 .355
13 .34 -, .37 .37
14 .37 .39 .385
15 .39 .38 .385
16 .42 .42 .41
17 .45 .40 .41
18 .47 .40 .41
18 .47 .40 .41
19 . .50 .45 .43
20 .53 .42 .43
21 .55 .43- .43
22 .58 .48 .44
23 .61 .42 .44
24 .63 .43 .44
25 .66 .43 .44
'26 .68 .50 .46
27 .71 .42 .46

r2B-- .74 .55 .50
29 .76 .45 .50
30 .79 .63 .50
31 t . 82 .57 .50

32 .87 .20 .50
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TABLE- A2

61: 47 .24 .30 .34 .38 .45 .53 ;

g : .298 ,305 .355 .37 .385 .41 .43

n 4 .19 .22 .42 .48 .53 .64 .72

n :

g : . 4 4 .46 .5

.76 .84 1.00

e : . 6 2 .70 .80
1
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ABSTRACT

Wilcox (1981a, 1982) proposed method of scoring and analyzing

achievement tests and achievement test items that might be used to solve

various measurement problems including correcting for guessing without

assuming' guessing is at random-. The new procedure is based on certain

assumptions about how examinees behave when taking an answer-until-correct

test. Certain implications of these assumptions have been empiri -dally

checked and the results suggest that Wilcox's model will frequently be

reasonable. The purpose of this paper is to see whether similar results

will be obtained when a different type of achievement test is used with

a substantially different population of examinees. Included is a simpli-

fication of Wilcox's strong true-score model that gives a good fit to one

of the data sets. The paper also notes that a knowledge or random

guessing model is highly unsatisfactory when trying to explain the observed

itest scores. Finally, a new model for measuring misinformation is proposed

and found to give good results with two of the items.
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Under an answer - until - correct (AUC) scoring procedure,,examinees

choose alternatives on a" multiple-choice,test item until the correct

response is identified. Iin-the past this has been accmplioshed by having

examinees erase a shield on an answer sheet which reveals whether the cor-

rect response was chosen. If an incorrect alternative wa-fielected,

another shield is.erased, and this process continues until the examinee

chooses the correct alternative.

Wilcox (1981a; 1982, in press a) proposed a method of scoring and

analyzing AUC tests that solves Various measurement"problems. These iff-

clude correcting for guessing without assuming guessing is at random,

testing whether guessing is at random, measuring "how far away" guessingis

from being at random estimating the accuracy of know/don't know decisions

when a conventional scoring procedure is used, and empirically determining

the number of distractors needed on a multiple-choice test. -.Wilcox also

derived a strong true-score model that'allows the probabllity of guessing

the correct response to vary over the population of examinees, and the

model also allows true score and the probability of guessing to be correlated.

The new model contains-the beta-binomial model (Lord & Novick, 1968,

chapter 233 Wilcox, 1981b) and the Morrison & Brockway .979) model as a

special case. The scoring procedure has been applied to criterion-

referenced tests ( ilcox, in press b, in press c) and found to'' ubstantially

reduce the problems noted by van den Brink and Koele (1980) and Wilcox (1980).

The purpose of this paper is to empirically investigate certain im-

plications of the assumptions made by Wilcox, to suggest a new model for

measuring misinformation, and to indicate a modification of Wilcox's strong

true-score model that-might be used in certain situations.

I-
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2. METHODS AND RESULTS '

Consider a randomly sampled examinee responding to a specific test

'item under an AUC scoring proc ure'.04ket pi be the probability that the

'correct res se is chosen on the ith attempt of the item, and suppose

that dkaminees.whO do not ,know the cortect response can eliminate it most

t-2 distractors- from coAsideration icia partial information. Once the
" ,

1 4

. examinee eliminate
/
4)many distractors as he/she can, a response is

.

chostn" at random from among those remaining. If the randomly sampledv, 1
e

examfriee knows the correceresOodse, it is assumed that the correct alter-

.

native is. chosen on the firSt attempt.
. ,e

, .
,

. . jo
-. 1-4

if ; is the pro\portion of examines who pow the correct response,.

and if ;i is the proportion, who can eliminate i distractors, then the pi's

1
-can be written as linear combinations of the ;'s. Folexample, if there
1-.1

it

are t=4 aternatives, '

'+
et

*131 4 40/4 + 41/3 + 42/2

4

p2 (1/4 41/3 42/2

P3 = 40/4 1- 411/3' PP

Rly

40./4

and .so (

Thus, if N examinees are tested;\ and if xi

..

4

ith attempt of an, i tem, ttthe 'esstpate of ;

Moreover, the aboile -resurts, easily geperal
t 4 t .

. .

examinees are corvect on

is simply ; = (xl-x2)/14.

ize any -t* (Wilcox, .1981

their

a)

and it .can be s.eenithast,

4
P1 P21 l 1 Pt

ei
tw

K

0 2.1)
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A test of,Whanical abilities was administered to examinees

in Great Britain who were appreximately 14 years old. Each item required
4

the examinee to apply some physical law'in order to solve a problem.

For example, one of the questions was stated as follows:

"Where can ajet plane'not fly?"

The alternatives were (A) over deOp-water, (8) over high mountains,

(C) over mountains on the moon,(D) very low, (E) 8 miles above the earth.

Resurts
,

in Robertson (1978) were applied to each of the 30 items to

test whether equation 2.1 might holds. The first 15 items had t=5

alternati4es, an the remaining 15 had t=3. The x. values are shown in
.

Table 1. There were 386 examinees, but some examinees omitted certain

items. For 20 of the items, Robertson's test was not necessary since

estimated pi values were already_conOstent with equation 2.1. Among

the remaining items two were significant at the .01 level.(item( 7 and

30 in Table 1), one was significant at the .05 level (Item 29), and the

remaining items were not significant at the .25 level.

3. THE MODEL AS A DIAGNOSTIC TOOL

.
When measuring achieVement, particularly within an instructional set-

t,
ting, it woUld be helpful to have some method of detecting misinformation-,-

4 .41*
identifying the type of misinform on being.used, and Aen it exists,

measuring how pervasive this misinformation is. Of course the teacher's

judgient of how the students are behaving on a test is amintegral part cif

diagnosing misinformation. The results reported here are intended to sup-
.

plbment or possibly help verify theteachdt's view. Included is.ia modifi-

cation of Wilcox's model which might be.helpfu6n this endeavor.

s-rioted ih the previous sectien, item 7 proved to beinconsistent

wiAti Wilcox's model, and the natural ruction is to try to determine why

we got this'result.The item was,worded as follows:

9



11N block of iron weighs 40 newtons at room temperature. When
it is heated until it .is red hot it gets bigger. Now, much will

- it weigh when red hot? j,

(A) 39 newtons, (B) 40 newtons, (C) 40.5 newtons, (D) 41 newtons,
and (E) 42-newtons.

It seems reasonable. that some examinees might believe that because the

iron is bigger when red hot, it should weigh more. Thus, Oaminees will

eliminate A and B from consideration and choose from among the responses

C, D, and E. If the proportion of examinees aping in this manner is

reasonably large, we would expect a disproportionate number of examinees

requiring 4 attempts to identify the correct response, and this is.consis-

tent with thefrequencies'fin Table 1.

For the reasons just outlined, it seems that Wilcox's model is inap-

-propciate fOr item 7,-arid that the fat-Towing model be used-in its place.-

Let 4 be the proportion of examinees who know the correct response, and

111/1' suppose that examinees who know are always correct on deir first attempt.

Let
1
be the proportion who do not know and choose alternatives at random, and

let be the proportion of-examinees who believe that the iron weighs more

when heated because it is bigger. If these three categories are the only

ones to which an examinee can Wong, then

V P4 C2 C1/5

and

(3.2)

(3.3)

(3.4)

(3.5)

P5 W5 .(3.6)

6 -Note that this model' is similar to the misinfonpation used by Duncan (1974).

85
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An obvious implication is that 62=p3=p5. The unbiased, unrestricted

maximum likelihood estimates of the areare iii=.425, P2=.106, P3=.101,

154=.244, and P5=.124.
o

Let p be the common value of p2, p3 and p5 under the assumption the

model holds. Then the maximum likelihood estimate of p is just

(p2-1-p3-1-p5)/3.110 (Zehna, 1966). The maximuLlikelihood estimates of

pi
I

and p4 are still .425 and .244 respectively. A chi square goodness-of-

fit test yielded X2=1.055 with one degree of freedom, and this is not

significant at the .25 level. Thus, the model is reasonably consistent

with the observed'scores on item 7, and the maximum likelihood estimates

of 4, and 42 are Z=.312, '1 =.55, and Z.2=.134, respectively.

The misinformation model just deicribed assumes that examinees who

incorrectly eliminate response B will choose the correct response on

their fourth attempt. However, a slightly more general model can be

applied. In particular, let y be the probability that examinees with

misinformation will choose the.correct response on their fourth attempt

once they leafti that responses C, D, and E are incorrect. Then equations

(3.5) and (3.6) become

P4 Y42 41/5

P5 (1-Y)42 41/5

Usi;;Fiquations (3.3) and (3.4) estimate 41, we now have that

;1)= 5(.106 +1101)/2.= .5175. Sub tituting this result in the remaining

equations yieldg = .3215, 2 = .161, and y = .873.

4. AN EMPIRICAL ,CHECKIrOF WILCOX'S STRONG TRUE SCORE%MOOEL

Wilcox (1982) proposed a strong true-score model -for answer-until-

correct tests that tan be described as Consider a specific

43.
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examinee responding to n items. Let"yi (Ii=1,...,t) be the number of items

for which the examinee chooses the correct response on the ith attempt.

Assume that the probability function of the yi's is multinomial; i.e.,

t
yi

f(Y1,..,Ytiel,...,0t) = n! n e. Ly.1

i1 1 1-

where the ei's are unknown parameters, zei=1, and Eyrn. Wilcox assumes

that for the population of examinees, the marginal distribution of SI
1

is

beta-binomial given by

B(r+y1, n+s-y1)

f(Y
(yi] B(r,$) (4.1)

where r>0 and s>0 are unknown parameters, and B is the beta function.

Note that this assumption has proven to be useful when addressing various

measurement problems (Wilcox, 1981b).,

Next let ---02/(1-01). Wilcox assumes that examinee with high 'ability

are more likely to gues the correct response when the do not know. This

assumption was expresseti in terms of by assuming that for the populAion

of examinees, it is an increasing func 'on of 01.. In particular, E(clei)

is assumed to be given by

0 r1

r

(v

(vi+rv2v ) ev1 -1

.

(1-e) 2 do + (t-1)-1

v -1 . ,
F1-4

1
) (

2
)

where c, vl and v2 are unknown parameters satisfying 0<c<1-4-1

vi>0 and v2>0. Since for a Specific examinee

I

87,
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E(y2Jy1, 81, 82) = g,

it follows that

8

Ee(y2ly1) = E(glyi) (4.2)

where E means expectation over the population 'of examinees (i.e., over the

joint distribution of el and 82). This last result leads to an estimate of

c, v
1
and v

2'
and the details are given by Wilcox (1982).

First we tried fitting Wilcox's model to the items having t=5

tractors. As already pointed out, one of these items appear not to .

satisfy equation 2.1, and so it was eliminated. For the remaining 14items,

the parameters in equation 4.1'were estimated to be i=6.565, and i=6.487.

The observed and expected frequencies arT chown in columns two and three

of Table 2. As'can be seen, there is close agreement among ,the-corres-

ponding values, and a chi-square goodnessr-of-fit test is highly nonsignificant.

Note that the items with t=3 alternatives could have been included, but

they were analyzed separately in order to illustrate a sim lification of
t

model that might be useful in certain situations,

Next, c, vl and v2 were estimated to be C=.5, ;1=1.2396 and ;2=.5692.

The model assumes that for every examinee 82=(1-81)e where g is given by

equation 4.2. This implies that the marginal distribution of y2 is.

f.(Y2).= (Y I' )g(Yde

Where

(Y2 f

o-

(4.3)

y !(n-y2)!
((1-8 ) ) 2 1-(1-81)g)

n-y
2 (444)
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andlwhere from previous results, g(e1) is assumed to be a beta distribution

L '`N
with parameters P=6.565 and §=6.487. Thus, a check of the model is obtained 4k

Lby determining whether the right-hand side of equation 4.3 gives a good

approximation to the observed marginal distribution of y2. Equation'4.3

was evaluated with IBM (1971) subroutine DQG32. The observed and expected

values for y2tare shown in Table 2. As can be seen, equation 4.3 gives-

a reasonably good approximation to the observed frequencies, and a chi -

square test is not signific'ant at the.05 level.

A Random Guessing Model

It is interesting to see what happens when a random guessing model

is assumed to hold. The expected frequencies for y
4
were computed, and

they are shown in Table 2. It is clear that a random guessing model gives

totally unsatisfactory results, and a goodness-of-fit test is highly

significant. This result is consistent with results in Wilcox (1982) as

well as Bliss (1980) and Cross & Frary (1977).

0

`Analysis of Items with t=3 Alternatives

The analysis of the items with t=3 alternatives reveals that in some

'instances, a simpler, version of Wilcox's model might ed. The motiva-

tion for this 'modification arose as (follows: When estimating c, vl, and v2,

the value of t is estimated at each of the yl values, and it is assumed

that these values are strictly increasing: For the items having t=3

alternatives, the estimates of t corresponding toy1=2(1.)15 were .578,

.577, :654, .615, .582, .564, .4481,5.574, .52, .636, .595, .552, and .57.

There were no cases fof y1=0 or 1. If the estimation procedure used by

SU
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a

Wilcox is applied to these values; the results indicate a slight increase

in E with increasing values of yl, but the increase would seem to be too

small to be concerned about. This suggests that a simpler model be

considered where the t values are replaced by their average which is t=.5471.

Thus, for a specific examinee it is assumed that e2=.547-(1=a1). Next

replace (1-01)E with .547(1-01),in equation 4.4, and replace f(y21e1). in

equation 4.3 with the resulting expression. Again g(e1) was assumed to be

a beta distribution, and the estimate of the parameters was found to be

i.=5.9877 and i=4.5207. The last two columns of Table 2 show the observed

and expected frequencies of y2, and the level of significance is greater

/1 than .1.

DONCEUDIWREMARKS

Empirical investigations (Blirs, 1980; Cross & Frary, 1977) have shown

that a random guessing model may be untenable, and it has been argued that

such an assumption will frequently be unrealistic (e.g., Lord & Novick,

1968; p. 309). All indications are that guessing will be higher than ran-

dom, and the strong true-score model described here is consistent with

these results, Moreover, our common sense notion is that guessing should

not be ignored, and in certain situations analytic results'show that guess-,

ing can be a serious problem,(van de Brink & Koele, 1980; Wilcox, 1980).

Since all indicatioris are that the assumptions about how examinees behave

under answer- until- correct tests will frequently be consistent with ob--

served test scores, perhaps it- is now possible* td deal with guessing in

a more effective manner.
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Another important point made by a referee is that investigators might

want to collect pretest data under an AUC procedure even if the procedure

is not to be used in operational versions of the test. Various possibilities

are discussed elsewhere (Wilcox, 1981a, 1981c, in press a). These include

the ability, of estimating test item accuracy under conventional scoring

procedures, and estimating the effectiveness of the distractors. If

these values are judged to be too small, it might be possible to correct
6 %

the problem by modifying or replacing some of thkzdistractors.

Another situation where AUC tests might be useful involves the

biserial correlation. When estimating this value, improved information

about might be useful (Ashler, 1979).

A third possible application is the empirical derivation of a formula

score thaiwZbfl-ects-Tor guesiing without assuming guessing is at random

(Wilcox, 1982). Once certain parameters are estimated,, this scoring

forMula can be used when the only available information is an examinee's

observed number-correct score.
t

Finally, it is not being.'suggested that Wilcox's model be routinely

.applied. Instead, it is being argued that if the underlying assumptions

seem reasonable, and if the observed test scores'are consistent with /

these assurptions, then Wilcox's model might be considerbd when Scoring

and analyzing a test.
*

9i
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TABLE_ 1

Number of Examinees Needing i (h1,... ,t} Attempts

to Get the Correct Response

ITEM

1

2

3
4
5
6

7
a
9

10

11

12

13

14

15

16

17

18

19

20
21
22
23
24
25
26
27
28
29

- 30

ATTEVIS
1 2 3 4 5

332 38 10 3 3
109 94 60 74 49
233 69 47 24 13
172 88 62 40 23
184 81 47 45 29

m 250- 80 31 14 11
164 41 39 94

1

48
195 88 34 32 37
174 69 55 43 45
146 70 . 85 58 26
"290 34 25 16 21
203 76 50 30 27
135 106 64 42 394.
231 70 34 28 -23
72 96 67 78 73

,'245 90 49
''1.68 125 91
272 73 38

.-228 140 14

272 54 56
220 89 72
'257 85 37
308 47 22
151 111 83
121 130 119
241 88 38
235 79 50
232 76 54
101 121 140
94 101 168
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TABLE 2

Observed an Expected Frequency

'Value

Observed Y2

Frequencies
t=5

Expected Y2
-Frequencies
t=5

Expected Y2
Frequencies
Under RE..ndom

Guessing

Observed Y2
Frequencies
t=3

Expected Y9
Fr9quencies
t=3, ):;=.547

0 23 24.51 68.16 16 13.24

1 64' 70.77 115.82 33 35.25

2 94 .99.78 101.73 54 54.24

3- 82 90.04 60.09 70 L 62.97

4 72 . 57.65 26.29 45 58.97

5 31 27.54 8.91 '48 46.57

6 12 10.09 2.39 36 . 31.45

5 2.87 .51 i7 18.28

8 1 .63 .09 9.07

9 7 3.83

10 2 1'.34

a

I

F
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ABSTRACT

,t\ For a specific achievement test item and a randomly selectd examinee,

let p be the probability of correctly determining whether the examinee knows

the correct response. 'Various techniques have been proposed for estimating

p. The purpose of this brief note' is to describe and illustrate how results

in the engineering literature on "k out of n system reliability" can be

used to study and characterize tests basedon the estimated values of p.

In particular, we can empirically ,determine the minimum number of distractors

required for multiple-choice tests. If we estimate p with n answer-until-

correct tdoring procedure, we can also determine the Minimum number of

11,

examinees needed to be reasonably certain about whether y is less than or

greater than some predetermined constant, Where y=Epi and pi is the value

of p for the 411,itdM on an n-item test. Irk otherwards, we can determine

whether the, expected number of correct decisions on an n -item test is

reasonably large.

:el

A
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SuRpose we have a multiple-choice achievement test iitem that represents

a particular skill. If an examinee chooses the correct response, we decide

he/she has acquired the-skill. As indicated in Section 2 of this paper,._

there are several methods for estimating the probability that for a typical

examinee, we correctly'decide whether the skill has been acquired. Usually

however, these techniques have not been used to.analyze test,6at measure

n skills, and they have not been used to empirically determine how many

distractors we need for an item. The purpose of this paper is to i'llus'-

trate how results in the engineering literature on "system reliability"

can be used to help solve these problems. Section 3 reviews the results we

will'need. Included is a slight extension of an existing theorem which, as

will be illustrated, is useful when addressing certain measurement problems.

Section 4 describes 'Six examples of how these techniques might be applied.,

2. Methods.for Estimating Item Accuracy

Under normal testing procedures it is impossible to estimate the pro-

bability of making .a171CO):i---ectdecision about whether an examinee has

acquired a skill. In particular, there is no estimate of the probability

of guessing the correct response when an examinee does not know, nor is there

an estimate of the probability of knowing and being incorrect because of

carelessness or a momentary distraction. However, there are circumstances

under which these probabilities can be estimated.

One approach is suggested by Wilcox (1'980). Consider a multiple-s

choice test'item wittri alterpatives, one of which is correct. Fora popu-

lation of ex nees, let be the proportion who know the correct response,

98
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and-let (i=0,1..,t-2) be the proportion of examinees who 'do not know

but who can eliminate i distractors. Suppose an answer-until-correct scor-

ing procedure
,

is used which means that examinees choose alternatives until

the correct one is identified. If examinees who know are always correct

on the firstChoice, and if examinees who do not know guess at random from

among those distractors they cannot eliminate, then for a randomly selected

. examinee, the probability of a correct on the first alternative chose sis

4
t-2

E i. /(t -j).

j=0 "

.th
The probability of a correct on the 1 alternative chosen is

t-i

E
y(t-j).

j-0

.Suppose we decide that a testee knows the answer if the first alternative

chosen.is correct. The probabilities of the four possible outcomes are

shown.in Table 1.

TABLE 1

Four Possible Outcomes-of a Randomly Selected Examinee
Responding to an Item

Decision
Knows Does Not Know

Latent Knows 0

State 14fes Not Know t

T2 E-

i2
T4
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, Thus, the probability of atcorrect decision for a randomly selected, examinee
is

p = c+ E Ti
i=Z

It canibe shown that for fixed, p attains its maximum value when guessing

Is at random, i.e., co = 1-c.

For a random sample of N examinees, 'let

th.
a correct response is given on the 1 try.

z. be the number of times

Then (z1- z2 } /N, and (n-z2)/N

are unbiased maximum likelihood estimate of c and p respectively. Unbiased

maximum likelihood estimates of the 'ci is are alto readily obtained as is

illustrated by Wilcox (1980) for the -special case .t=4.

Another way to estimate the accuracy of decisions about whether the

typical' 6aminee,has acquired a particular skill is with latent structure

models. Macready and Dayton (1977) illustrate this for the case of equiva-

lent items. Two items are defined to be equivalent if a- randomly sampled

examinee knows both or neither one. In. addition to including guessing, the
$

model used by Macready and Layton allows for the event of an examinee

kniing and being incorrect.

There are four methods for checking the assumption.of equivalent items

(Macready and Dayton, 1977; Hartke, 1978; Baker an Hubert, 1977;, and Wil-

cox, in press, a). If the assumption of equivalent items is ContraindiCated

by the data, we might still use a latent structure model, but one based on

less stringent assumptions. In particular, we might assume items are hier-

4rchically related which contains the assumption of equivalent items as a
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special case (1161cox, in press, b). Dayton and Macready (1976) describe

a general approach to hierarchically related items.

3. Review of "Reliability" Them*

Suppose a test measures'n skills. For a randomly selected examinee

.th
let x.=1 if a correct, decision in made about whether the 1 skill has been

acquired;otherwise,x.=0. Also, let p.=Exi ere t1.4 expectation is .

taken over the population of examinees. As noted in the previOus section,

pi can be estimated under various circumstances, We define the k out of n

reliability of a test, pk, to be the probability of making at least k correct

decisions for "a randomly selected examinee,. Symbolically, pk=Pr(Exi>k).

Some readers might object to defining test reliability in the manner

described above since it differs from the usual definition of reliability

in classical test theory. The reason we do so is because it is consistent

with the usual definition of system reliability that is Xpplied to engineering
0

problems (e.g., Barlow and Proschan, 1975; Marshall and Olkin, 1979, p. 402).

The purpose df this section is to list some results about pk. Except
4

for Theorem 6, these results are not new, but they are not typically applied

to measurement problems, and so we describe them here for the convenience

of the reader.

First we note that if xi is independent of x., itj,

Pk

n x. 1-x;
E n P. 1 (1-P.)

x-S>k i=1
(1)

where x=(x :
'

x
n
) and S=EX.. For some= cases, (1) is easily computed,
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for example, when-n is small or ik=n, but frequently p :is difficult to
.

calculate. Another and perhaps more serious problem is that the xi's might

not he independent. In this case, determining p k is more difficult. For

these reasons, efforts have been made to fi ,pd ways to, approximate p , and

to determine its properties'.

Theorein 1. p
k is ser--Ntly increasing in each pi. A proof is given

by Barlow and Proschan (19,75, p. 22).
7

Theorem 2. If'cov(xi , Vjz then

n
11 p. < pk < 1 (1-pi)
i=1 1 1=1'

This is a special case of a result given by Barlow and Proschan (4975, p. 34).

,Theorem' 3. If cov ( xi xj)>0 ,

max n pi <
x:S=k i=1

1

P)

This follows 'from Theprem.3.9 in Barlow and Proschan .(1975, p. 37).,

Definition: For any vector a, let a(1) > a(2)>...>aw be the elements"
of a written in desLending order. The vector a is.said to be majorized by

the vector b (b majorizes a) if

and

k
E E b(i) 2 1,..., n-1

i=1 i=1

n-
a = E

i=1 (i) i=1

104.

(2)



S..

Syrnboli_cally, b majorizes a is written a<mb. rf (2) is replaced by

t

n n

E a. < .

i,..1 (1) i.Z
b (1)

0
wb weakly majorizes a, which we write a< mb.

Theorem 4. Suppose we have two test forms there pi is defined as

before and pi is the corresponding probability on the other test. Suppose,

x is independent of x ,i i*
'r =-log p

i
where log isi---

ij, for both test forms. Let ri=-log pi, and

the natural logarithm. If ?r, then

Pk (P*) __:s (0

with equality holding when k=n. A proof is given by Pledger and Proschan

(1971). k
)

n
, inN xi xA corollary of Theorem 4 is that pkbi .?.Pk(PG,...PG) kviPG kl-POn-x

x=k.-,1
n ,-; ..

for any 2., where pc = n p. " is the geometric mean of the pi's:
"/ i=1 1,

Theorem 5. Pledger and Proschan (1971) also show that-if Ri=

*
and Ri...(1-p.*

l'
)/p. then R

*
<
m
R implies that

1

Pk (k) -5- Pk (a).

)

it

/

Pp) /pi

We should remark that r<mr* does not imply that R<mR4k, nor is the

converse true.

r
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Theorem 6. Let r, r*, R and R be defined as in ,theorems 4 and 5.

"Suppose xi is independent of xj, i j, for both test forms, that r does not '

*
majorize r that for some c, r> r'= r c, where ci>

Then pk(E) >131,(p ) for any k.v The same his true-if R>n1R-= Rte- c for some c,

c.>0.1
Proof: Theorem 4 lays that r>mr- implies that pk(E) .?_pk(p:). Also,

r c means that pi =pi bi for some appropriately chosen bi>0,

where pi is the pi value corresponding to ri. Thus, by Theorem 1,

pk(2) >pk(2, ). The proof is exactly the sane for R andl

Theorem 7. If xi is independent of xj,.Vj, Hoeffding 0956) shows that

and

P
k

> .E (7)'13 k
j=k J

n

Pk (2) < E () P (1 k -1 > np
j=k

_./

where p = n it .. (See, , Gleser, 1975.)

4. Applications

As pr'ev

how the above

This we now do.

N

itated, the purpose of this paper is to illustrate

reins can be applied to certain measurement problems.

104
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Example 1: Suppose multiple-choice, test items are being used, and that

we want

pk >P . (3)

.

for some positive R <1. What is the minimum number of distractors required.

To solve this problem, suppose guessing is at random, and that an

examinee behaves as assumed under ttrea'nswer-unti1-correct scoring procedure

described in Section 2. As was pointed outfor fixed pi is maximized

when guessing is at random. Furthermore, the value (yip. is an increasing

function of ;(i), the proportion of examinees who know the answer to the i-t-1-1

item. Since for any i, (i)
is unknown, first consider the value of c(i)

that minimizes pi. This is (i) = 0("i=1,...,n). Suppose xi is independent

of xj, i#j. If the dame number of distractors is used for each item, then

plp2=...=pnp, say, and

n

pi( E x
(n) px

(1
_p)n-x

x=k
(4)

Let p0 be the value of p for which (4) equals P . Then the number of re-

-1 -1
qui red distractors is t = (1-p0) since, when ;"=0,-p=1-t . For example,

if P . .93, n=10, and k=8, then p0 . .9 and t=10. Of course, fn 'Practice,

this is an extremely large number of distractors. Howevei., (1)=0 (i= 1,... ,n)

is highly unlikely, and so in reality, a smaller number of distractors

AA%

would be needed when guessing is at random.

105
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To illustrate Theorem 3, consider the more general case where

cov(xi, xj)>0. If again pl.....pn=p, to guarantee.(4)'we determine p such

that p
k

= P*. From Theorem 3 it follows that the required number.of dis-
,

tractors is (1 -p) -1. If, for example, P*=.93, n=10 and k=8, then (.a1)
8
=.93.

and sc t=111. To reiterate, this value oft is based on an unrealistic

value for the
(0's

. More realistic situations are considered below.

Our goal here is to illustrate Theorem 3*in a siffple manner.

Example 2: We considerf,the same situation as in example 1, but we

assume information about the 's iks available. More specifically, *suppose

the Cs have been estimated to ( 2 )
6 6

(3) (4)
.75,

(5)
=

(6) (7)
=.85,

(8)
=.9 and

(9) (10).
.95. To determine the minimum number

of distractors, again assume guessing i$ at random,that cov(xitx )?0, and k=8.

To simplify the illustration, suppose the same number of.distractors isr tom
T

be used for each'item. Since p; is an increasing function of and sibce

11111
. when guessing is random p.1 =+(1-0(1-t

-1
), we have, by an application of

'
f .

Theorem 3, that a lower bound to p8 is

(.75+.25(1-t-
1))2(,.

85+1.5(1-t-1))3(.9+.1(1-t-1))(.95+.05(1-t-1))2 (5) ,

ti
*

Thus, we can guarantee pe by finding the smallest t such that (5) is

. greater than or equal to P*. Table 2 gives' the value of (5) for. t=4(1)8.

TABLE 2

Values'Of (5) for t=4(1)8 and k=6, 7 and 8

t

4 5 6 7 8

8

k 7

6

.745 .79 .82 .85 .87

.79 . .83 .85 :88 7.'89

.85 .88 .90 .91 .92
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1

These results are more encouraging than those in example 1, but having more

than 4 or 5 equally attractive distractors prqmisesd to be difficult in prac-

tice.

We note that the lower bound to pk orem 3 can be very sensitive

to the value of k. Table 3 also gives the value of (5) for.t=-4(1)8 for both

k=7 and k=6.

Next suppose that xi and
j
are independent, ij. -From the corollary ,

to Theorem 4, a lower bound to pi -is

r
10

10
( ) pf2 ( 1 PG)

10-x

x=8
(6)

Since we are still _assuming guessing is at random, pi= +(1-4)(1-t-1) and

equation (6) is easily calculated for any t. The values of pG corresponding

to t=2,3.,4 are respectively, .894, .942 and .948. Substitutin?these

values in (6), it follows that for t=2, pe...915, for t=3, p8.983, and for

)t=4, p8.>987.
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,,If instead we apphy Theorem 7, the values of p corresponding to t=2,3

and 4 are .8375, .9317, and 488, and the resulting lower bounds to p8

are .925, .973, and .988, respectively.. As is 'evident,,the lower bound

to'p8 for the :case tF is. higher than'it was using the Corollary.td Theorem

4, but for t =3 and 4, the; lower bounds pre about the samai.

In contrast to the, previous illustrations, test accuracy is very high
, -

using a "normal" number of distractors. An interesting ,feature of the

illustration just given is that thlre seems to be little reason for using

t=4 dtsiractors, rather than t=3, since. the increase in p8 is minimal at'

best. Note, however, e was derived under the,assumption of random

guessing. If-examinees have partial "information,,the p. values will be

lower which in turn will lower the value of p8.: As mentioned'in section

2,, an answer- until- correct scoring procedu're can be used to check foi-

partial information, and to estimate the pi's.

can 1p 3: The situation is' assumed to be the same as in example 2,

except that we want to allow for the possibility of having a different

number of distractors across items. Assuming xi is independent of x. itj

the simplest approach to guaranteeing pep is to determine the smallest

t for each item such that pi>(30)
1/n

where p0, is the value of pG in.the

n .

corollary,
x

to Therem 4 such that E

8

*

G

n

GI

(i_n-x.=
r
-*.

If, for example,'
/ =

rN
*

P =.95, 1)0..915. It follows that for 4-=.5, .6, .75, .85, .9 and .95, the

corresponding values of t are 6,5,5,3,2,2, respectively. (We assuiie that
4

a minimum of t=2 distractorsare used.)

For t=3 in,exlple 2, assuming xi is independent of xj, itj: and that

guessing is at random, p = (.834, .871, .92, .92, .952, .952, ..968, .984, !984)
ti'

.1/
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.

"lying that pG=:942 and so p81.983. In example 3, using the tcidicated

.,t values; p is given by p'=(.917, .92, .95, .95, .952,' .952 ,952, .95975, .975),

pG=.959, and so pe..9§3. This suggests that the k out of'n reliability
.

.
with the latter test form is higher than the firstbut this has not been

established. The corollary to Theorem 4 gives a lower bound to pk' but it

has not been shown that thp lower bound. ingicates whichtest form is more

accurate. If it had been true that pi>pi (i=1,...;10)-, the test form in

example 3-would be more accurate according to Theorem 1, but it is evident.

that this is not the case. However, by applying Theorem 6, it can be shown

that-the latter test form has a higher Value for p8-

'.Examp14:- As mentibned in section 2, Macready and Dayton (1977)

examine a 4latent structure model that can be used to estimate p, Included

in their discussion is a solution to the following problem: When measuring

a particular skill, how many' items are needed, and what passing should we

ust, so that the probability of making a rect decision about whether a

typical examinee' has acquired a particular skill i.e., the value of p, is

reasonably close to one.

As before, let g, be the proportion of examinee who have acquired the

skill, and for a yanbomly selected examinee, let a=Pr (in.coerect response!

examinee knows) and let 13=Pr(correct responselexaminee does not know).

Suppose, n equivalent items are to be used, to measure a skill. .cready

and Dayon provide a table of n values and passing scores corresp. g ng to

arious values of c, a, and a.. For eximple,40(FTS.6, a=!05 and i3=.3, and
. .

if we want, with probability at leastL.95, to correctly determine whether
.

.. f .
.

,

a randomly selected examinee has acquired the skill-being measured, Table I

10p
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in Macready and Dayton (1977) says we need to use n=4 items with'a passing

score of 3.

Usiirthe-reults in section 3, we can extend the technique proposed

by Macready and Dayton to' tests that measure m skills. As a simple illus.:

tration, suppose we haVe 4 skills, and the number of items (and passing

score) corresponding to these four skills are 4(3), 5(4), 4(3) and 7(5),

respectively. For the'first skill, for example, we have four items, and

if an examinee gets at least 3 correct, we,decide he/she has acquired the

skill. Further, suppose that the estimation procedures described by Mac-

ready and Dayton are applied, and the four estimates of are .4, .5; .6,

4, and .,75; the corresponding estimates of a are .05, .1, .05, and .1; and

Igarthe estimates of 0 are .2, .3, .4, and .4. The minim probability of a

correct decision associated with the four skillS can be read from Macready

and DaYton's Table I (assuming a loss ratio of one), and they are .95, .9,

.9, _95. Making the appropriate independence assumption, Theorem 7 says

that, for a randomly selected examinee, a lower bound to the probability

of making at least 3 correct decisions for the far skills is .97.

ta.

Example 5: Nprofidency test is designed to measure m skills. For

each skill, a decision is Made about whether an examinee knows the correct

re4onse. How many items per skill do we need so that for the m skills,

at leastsk correct decisions are made for the typical examinee. This pro-

blem is similar to previouhllustrations. It can be solved using the

results in section 3 in conjunction with the techniques described by Mac-

ready and Dayton.
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Example 6: Suppose every examinee behaves as described in section 2

under the answer- until - correct. scoring procedure,sand that x. is indepen-

dent of.xj, itj. Let y=ffx.=tp. be the expected number of correct deci-,

sions on an n-item test, i.e., the number of times we expect tO correctly

determine whether a typical examinee knows the answer to an item.' We

consider the problem of determining whether y is reasonably large, say

greeter than or eqtal y0, a known constant. For a random sample of N

"examinees, let wij=0 if the jth examinee is correct on the second attempt

of the ith.item; otherwise
wij

=1. From section 2, Ew. =p. , j=1,...JN,
ij

. . '
an14.12 we -decide y>yo if c=EEw,./N>yo; otherdise we detlide y<yo. Now

.13

large must N be so that we can be reasonably certain of Taking a correct

decision about whether y is greater than or less than yo?

Note that the situation is similar to one considered by Fhanbr (1974)

and Wilcox (1979). The main difference is that rather than a binomial

. model, here we have a compound binomial' distribution.

Following Fhan'er (1974) s*lppose we want to choose the smallest N so

that when -y_yo+,'S*,

Pr(y>y0)>T

and when y<y9-6*,

(6)

Pr(i<yo)>T (7)

where 2 <T<1. Fhaner assumes >0, but we require (5 >1 so flat we can apply

Theorem 7. In particular, for y>yee, and far N=1,

EaC>T0) =
Y0+6

X
n -yo -8 (8)

n

where [y0] is the smallest integer >yo.. Again applying Theorem 7 (the

second inequality) we have that for y<yo-IS .

111



**n-x

'Pr(Y <10) = 1-Ary
x=

x n nLi 1

, Er 1L1
[Yo 8

* x0 - 8
0.
+

(9)
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Let ni and n2 be the right-hand side values of (8) and (9) respectively.'

From the above results, we have that-for -a random sample of N examinees,

when

and when

-to

N

Pr(y>yo) > E

Y=[NYO]

N-Y
1-n )

1-

[Nyo]-1

Pr(y<yo) > E (;)'42
(1-n

y=0

N-y

(10)

Thus; we can guarantee both (6) _and (7), regardless of the actual value

of y,, by choosing the smallest N so that the right-hand side bf both -(10)

and (11) are greater than or equal' to T.

As a more specific example, suppose we have an n=10 item test, that

an answer-until-correct scoring proEedure is to be used to estimate y and

ed in order to

particular, sup-

*
if y<y0-8 we

,

we want to determine the minimum number of examinees we ne

correctly determine whether y is above or below yo=f; In

-pose S =1, and that if -e__Yo+8 we want Pr(y2y0)>T=.9, and

want Pr(y<y,u)>T, regardless of the actual, of y.

. ,
'10 6

1Q- x n-x (101,cx.4n-9..
From (8) and (9), n = E ( ).8 .2 =.897 and n = E 618 ,

1 x=7 x 2 `x ' '
. x=0

Substituting these values. into (10) and (i1), tt can be verifid that the

-1
minimum N required is 67.-

k -.
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ABSTRACT

Consider an n-item multiple choice test where it i5 decided that

an examinee knows the answer if and only if he/she gives the correct

response. The k out of n reliability of the test, pk, is defined to

the probability that for a'randomly sampled examinee, at least k

correct decisions are made about whether the examinee knows the answer to

an item. The paper describes and illustrates how an'bxtension of a

recently proposerlWnt structure model can be used in conjunction
^1.

with results in Sathe et al. (1980) to estimate upper and lower bounds
ti

on pk. A method of empirically checking...the model is discussed. Included

is an exact test of whether guessing is at random.

"lb
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Consider a randomly-sampled examinee responding to a' multiple-

choice test item. In mental test theory there are, of course, many

procedures that might be used to analyze this item. One approach might

be as follows. Suppose a conventional scoring procedure is used where

it is decided that an examinee knows the correct response if the correct

alternative is chosen, and that Otherwise the examinee does not know.

If it were possible to estimate the probability, T, of correctly deter-

mining an examinee's latent state (whether he/she knows the correct

respore) based on the above decision rule, this would give an indication

of how well the item is performing for the typical examinee. The obvious

problem is that under normal circumstances, there is no way of estimating

this probability unless additional assumptions are made. One approach

is to assume that examinees guess at random among the alternatives when

they do not know the,answer. If this knowledge or random guessing model

holds, T is easily estimated. However, empirical investigations (Bliss,

1980; Cross & Frary, 1977) suggest that this assumption will frequently

be violated, and some related empirical results (Wilcox, 1982, in press a)

indicate that sVch a model can be entirely unsatisfactory for other reasons

as well.

Another approach is to use a latent struFture model, and many such

models have been proposed for measuring achievement (e.g., Brownless &

Keats, 195; Marks & Noll, 1967; Knapp, 1977; Dayton & Macready, 1977,

1980; Macready & Dayton, 1977; Wilcox, 1977a, 19776, 1981a; Bergen et al., 1980).

The choice of a model depends on what one is willing to assume in a

particular situation. These models make it possible to estimate errors

at the item level such as

117



4
2

R = Pr(randomly selected examinee gives the correct responselexaminee

dOes not know)

which in turn yields anrestimate of T. An illustration is given in a

[1]

later section. (For a review of latent structure models vis-a-vis

criterion-referenced tests, see Macready and Dayton,-1981.) For some

recent general comments on using latent structure models to measure

achievement, see t4olenaar (1981) and Wilcox (1981b).

Assume for the moment that for each item on an n-item test, an

estimateoftcanberode.Let.xi =1 if a correct decision is made on

the ith item for a randomly selected examinee; otherwise xi = 0. Then

E(xi) = T = ly is the probability of a correct decision on

the ith item where tlSe expectation is taken over the population of
,

examinees.

Within the framework just described, how should an n-item test be

characterized? An obvious approach 7S to use

= t(EX.) = Ti
[2]

which is the expected number of correct decisions among the n items.

Knowing p might not be important for dekain types of tests, but

/)surely it is important for some achievement tests. However, even if

p is knoWn exactly, it would be helpful to have sdme additional relatqI

information about Ext. For instance, a,test constructor would have-A/
. .

better idea of how the test performs if VAR(Exi) could be determined.

The problem is that VAR(Ex4)depends on COV(xi,xj), but:this last quantity

is not known, and at present there is no way of estimating it An

alternative approach is to use the k out of n reliability of the test

(Wilcox, in press b) which is given by



3

pk = Pr(zxi > k) .

In other words, if the goal of a test is to determTne which of n items

an examinee knows, and if a conventional scoring procedure is used,p
k

is the probability of'making at least k correct decisions for the typical

examinee.

Suppose, for example, n = 10 and 11,is estimated to bec. Thus, the

expected number of correct,deciSlons is 7, but there is no information

about the likelihood that at least 7 correct decisions will be made.

[3]

If P
k
wene known, a test constructor would have some additional and

useful information for judging the accuracy of the test. pk might also

b used as follows. Suppose it is desired to have p
8
.>.9, If is

estimated to be 9.1, this is encouraging', but it is not clear what

implications this has in terms of making at least 8 correct decisions

for the typical examinee.

It is not being suggested that determining pk is important for every

test that might be constructed, but certainly it is important in various

situations. For example, when measuring progress_ through an instructional

program, surely it is desirable to determine which of the skills represented

by the items on the test have or have not been acquired by an examinee.

An estimate of pk yields informatibn about how well a test performs this

goal.

If xi is independent of xj, i t j, an exact expression for pk is

available via the compound binomial distribution. Perhaps there are

situations where this independence might be assumed, but it is evident

that this independence will not always hold. If it can be assumed that ,

COV(xi,xj) > 0, bounds on pk are available (Wilcox, in press b). Recently

Sathe, Pradhan, and Shah (1980) derived hounds on pk that make no

119



4

p

assumption about COV(xi,xj). The main point of this paper is that these

bdunds can be estimatedAsing an extension of an answer-until-correct

(AUC) scoring procedure proposed by Wilcox (1981a). The paper also

indicates how an exact test can be made of certain, implications of the

new model. This procedure can also be used to make an exact test of

whether guessing is at random. (For an. asymptotic test, See Weitzman,

1970.) Finally, the paper includes some comments on how a test might

be modified when p or Pk is judged to be too small.

An Extension of an'Answer-Until-Correct Scoring Procedure

As just indicated, an extension of results in Wilcox (1981a) is

needed in order to apply the bounds derived by Sathe et al. (1980).

First, however, it is helpful to briefly review the procedure and basic

assumptions in Wilcox (1981a).

Consider a specific test item having t alternatives from which to
. 4

choose, one of which is the correct response. Assume examinees respond

according to an AUC scoring procedure. This means that examinees

choose an alternative, and they are told immediately whether the correct

response has been identified. If they are incorrect another response

is chosen, and this process continues until they are successful. Special

forms are generally available for adminiering AUC tests which make

these tests easy to use in the classroom.

Let 4
t-1

be the proportion of examinees who know the correct'

response, and let (i = 0, t-2) be the proportion of examinees

who can eliminate i distractors given that they do not know. Wilcox

(1981a) assumes that examinees eliminate as many distractors as they

can, and then choose at random from among those that remain. If pi



5
e\_

is the probability of choosing, the correct response on the ith attempt,

then
t-i

p. = I 4./(t j) (i-12...,
i=o .3

Note that the model assumes that at least one effective di;tractor is

[4]

being-used. Put another wat_no distinction is made between examinees

who know the answer and examinees whO can eliminate all of the distractors:

and

Assuming the model' holds,

P1 P2

1 P2

[5]

[6]

If in a random sample of N examinees, yi examinees are correct on their
/

ith dttempt, P*1 = yi/N is an unbiased estimate of pi which yields an

estimate of 4
t-1

and T.
-

Although empirical studies suggest that this motel will frequently

be- reasonable (Wilcox, 1982, in press a), there are instances where this

will not be the case. For example, some items might require a misinfor-

mation model, and an appropriate modification of the AUC scoring procedure

has been proposed (Wilcox, in press a). Further comments oh this .

problem are made in a later section of the paper.

Consider any two,items on an n-item test, say items i and j.
,

Applying results in Sathe et al. requires an estimate oft
li
=Pr(x

i
=1,x.=1),

i.e., the joint probability of maki a correct decision for bothhitemiT.

i and j. The remainder of this sect on outlines how this might be done.

It is assumed that an examinee's guessing rate is indeppndent over

the items that he/she does not know. This means, for example, that if

an examinee can eliminate all buf 2 alternatives on item i,'and all but
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3alternatives on item j, the probability of choosing the correct response

on the first attempt Of both` items is (1/2)(1/3)&=146..

For the,wo items under conilderatioq, let pkm(k, m = 1, ..., t)

be the probability that a randomly selected examinee chooses the correct'

response on the kth attempt of the first item, .and the ciirrect.response

on the mth attempt'of the second. If
ugh

is the proportion of examinees

who can eliminate g distractorsvirom the-first

from the second (g, h = 1, t-1), then
t-k t-m --,/

Pkm
i/0

j/ 4i/[(t i)(t j)]==0 a

The last expression can be used to express

item and h distractors

[7]

in terms of the pkm's

which can be used to estimate
t-1,t-1 . Note that if the first item has t'

alternatives, t) # t, simply replace t-k with t' -k in equation. 7.

To clarify matters, consider the special case t = 3. Equation

says that

Pll 422+421/2 + 420/3 412/2 + 411/4 + 410/6 402/3

01
/6

00
/9

.

P12 421/2 42-0/3 + 411/4 + 410/6 +
401/6

+ 400/9

Pla 20/3-+ to 00/9

P21 412/2 402/3 411/4 40116 410/6 400/9

P22 411/4 41o16 '-of/6 400/9

P23
10/6

130/9

P31 402/3 + 401/6'4. 400/9

P32 401/6 + 400/9

P33 00/9

122
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[9]

[10]
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Thus, starting with equation 16

410 -9P33

(401 = 6(p32 P33)

and eventually X22 can be expressed in terms of the pk Replacing

the Pkm's with their usual unbiased estimate yields a estimate of ;
22

say X22. But it can be seen that for the two items under consideration

(items i and j),

aTij 422 mi. 1 11

Replacing ;
-22

say Tid For

A

and pli with t22

arbitrary t, Tij

[19]

and'pli yields an estimate of Tlj = Pr(xe1,'xj=1),

is given by .equation 119 with ;22 replaced

with A

t Bounds on pk

Tbis section illustrates how the results in the previous section

can be used to estimate bounds on pk..

et al. (1980) are summarized,.

Recal tliatoTi = Etj'and let
:n

:s = X

Tii1=1 j= +1 .

U = p k
k

and

k
. (2S k(k 1))/2

C

1 2N-1, .

n(n k+'1)'

If 2V1(.4 <-(n -.2)11k,..1, then

tr

First, hdWever, results in Sithe

2((ie - 1)Uk...1
Vk +l)

.

Pk
( k)(k* k 1)

.4

as

./

123,

[21]

r [23

123]

[24]
tA-

4,
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where k* k - 3 is the largest integer in 2Vk 1/Uk_i. Two upper

bounds on pk are also given. The first'is

< 1 + k - 1)Uk 2Vk)/kn

and the second is that if 2Vk < (k 1)01e

(k* .1)Uk Vk
2

Pk(k - k*)(k k* 1)

where k* k 1 is the largest integer in 2Vk/Uk.

An Illustration

[25]

, [26]

To illustrate how pk might be appliedand interpreted, observations

of seven items were analyzed according to the procedure outlined

above. Each item had two distractors, and they were found to be

consistent with the assumptions of the answer-until-correct scoring

model. (See Wilcox, 1981a). Table 1 shows the observed frequencies

for the first two items. The question to be answered these

seven items are taken to be the whole test, do they give reasonab'y

-accurate information about what the typical examinee knows.?

Generally, when estimating
t22

there is no need to estimate all

Of the 41t. in equationS 8-16. For the situation at hand, ;22

estimated as f011ows. First compute .

;0213 p31 p32

for the.data in Table 1, this is .107. Next compute.

12/2 P21 7422 t02/

which is .074. Then
.1*

can be

[27]

[28]
art



422 Pll P12 412/2 402/3

which is equalito .225. Substituting,these values into equation 19,

.

[29]

the estimate of T12 is T12 = .75. Applying equation 6 to all seven items,

it is seen that p = 5.434. In otherwords, it is estimated that the

expected number of corr ct decisions is 5.434.

Next consider TheThe value of S was estimated to be 16.929.

From equations 20 - 26, this implies that

.418 < p5 < .74. [30]

This analysis suggests that these seven items, taken as a whole,

are not very accurate since there is at least a'26 percent chance of

making an incorrect decision on three or more items. How should the

test be modified? Another important question is to what extent can.

it be improved? One approach to improving the test is to increase the

number of distractors, and another approach is to try to modify or

replace the.distractors that are being used. The latter approach will

be considered first.

The initial step in trying to decide whether to replace or modify

the existing distractors is to determine the extent to which they can

be improved. This can be done with the A measure in Wilcox (1981, eq. 20).

This measure is just the difference between the maximum possible value
1

of r and the estimated value given that . 42. Another related

measure is the entropy function (see Wilcox, 1981a). This measures

the effectiveness of the distractors among the examinees who do not know

the correct response by indicating the extent to which p2, ,.pt are
.

unequAl. The closer they are to being equal,the more effective are

the distractors, i.e., guessing is closer to being random. It has been .
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pointed out (Wilcox, 1981a) thatA might be objectionable ay a

measure of the extent to which
'

p'
2

, p
t
are equal, but for present Pr-

,

poses it wou1seem to be of interest because increasing
Pk

depends on

the extent to which,x can be increased for each item.

Referring to Wilcox (19810., a little algebra shows that for the

case t = 3,

A = p3)/2 [30]

For item 1 in Table 1, A = .024, and for item 2 it is .034 (A is assumed

to be positive, and so if p2 < p3, A is estimated to be zero.)

If the number of alternatives for item 1 is'increased to t = 5,

and if guessing is at random:.then the value of T would be .893 which

orepresents air increase of .126 over the value of T using the existing.

distractors. Thus, if would seem that one approach to improving

item i is to find two more.distractors "that are about as effective as the

two being used. Of course in practice, this might be very difficult

to do.

Checking Certain Implications of the Model, and an

Exact Test for Random Guessing

Suppose yl, , yt haVci a multinomial distribution.with cell

probabilities pl, pt where Eyi = n and ypi = 1. This section

describes an exact test of whether two or more of the pits are equal.

In other words, the null hypothesis might be that p = p. for some i j,

or that pi = pj = pk, etc. An important special case is the null

hypothesis that-

P2 P3 =... =pt

124
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When equation 31 holds for the AUC scoring model, guessing is at random,

and the distractors are performing at their maximum possible,effective-

ness among the examinees who do not khow (see Wilcox, 1981a).

The main motivation. for including this exact test in the present

paper is: that it is relevant when verifying certain implications of the

new model described in previous sections. Consider, for example, equations
Al"

8 - 16. They imply that various inequalities must hold which includes"

Pll .1 p12 -1 p13 > p23 -1 p33 [32]

An asymptotic test of equation 32 is already available (Robertson, 1978).

Suppose, however, the number of observations is moderate or small and

,that, for example, o
.114 P 12 or P 13 <

p
23

<
P 33.

Then to' test the

assumption_that pli 2:
pi2

requires a test of p.,
='p12.

In the second

case, the null hypothesis would be p13 = p23 = p33. Note, however, that

if p11 < p12 and p12 > p13 p33, a'test of p11 Dp12 and
p23 p33 is

needed, but that p12 = p13 would not be tested because pi2 > p13 is

already consistent with equation 32.

The proposed test is based on the exact distribution of

r
S = zy. .

An expression for the probability funcifon of S- was derived by Alam and

Mitra (1981), but unfortunately their result is incorrect. (Prof. Alam

has confirmed the error in a letter to the author.) A correction to the

Alam and Mitra paper is in preparation which will include a correct

expression for the probability function of S. To. illustrate how this

distribution can be used to test the implications of the model described

in this paper, the distribution of S for k = 2 is given below.

[33]
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Let a be the smallest integer greater.than or equal to n/2, and let
I

7 2

b be the largest integer between n/2 and Wsirch that b
2
+ (n b)

where s is an integer. If n is odd

b n-a
Pr(S < s) = Y PpT(1 pl)n-Y + 1 (1q(1 p1 -Y [34]

y=a .. . y=n=b '

If n is even, subtract 1/2)1:11 n/2
(1 -

n/2
from the right-hand side,,of

in

equation 34.

For k ); 2 the exact distributton of S is given by a recursive

formula that will appear in a correction to the Alam and Mitra paper.

To illustrate the proposed test, it is useful to also note that for k = 3,

the joint distribution of y2 and y3 given yl is binomial with parameters

n yl, p2/(1 p1) and p3/(1 p1). Thus, from equation 34,

;Pr(y2 + ys
2
< slyi)

2 b I p2 p3 n-y y

y=a Y jil P1
1
-P1

y'

n-y, -a p2 P3 n-y1-y

y 1-pi 1-pi
y=n-yl -b

[353

2if n yl is odd, and 4f n yl is'even, Pr(y2 + y3 sly 1) can be determined

by evaluating the right-hand side of equation 35 and subtr'acting

n -y1

(n-y1)/2

p2 (n -y1) /2

1-p1 [36]1-p1

where n - y1 replaces n in the definition of a and b.

To test the hypothesis

H0:
pl

= p2
Pk

, 2
compute s = zyi and then compute Pr(S < s) undeP the assumption that Ho

is true. Iftthis last quantity is small, say less than a, reject H0.

Note that from Marshall and Olkin (1979, p. 391) it follows immediately

128
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that this hypothesis testing procedure is unbiasV. (In other words,

as the actual vector of p. values moves "away" from H
0'

the power of the

test increases.),

The procedure is illustrated by testing to see, whether guessing is

at randoM on ene of the items used above. The observed outcomes were

y/ = 303, y2 . 46, and y3 = 21. If guessing is at random, then, as

previously indicated, p2 = p3. Since p1 dogs not play a direct role in

the null hypothesis, the conditional distribution of y2 and y3 given y1

is used. The null hypothesis is that p2/(1 - 1)1) = p3 /(1 p1) = 1/2.

Compute s = 46
2
.+ 21

2
= 2116.

Pdx; + x23 < 21161y1 = 303) [37]

is given by equation 35. Referring to tables compiled by Pearson (1968),

equation 37 was evaluated to be .035 and so the null hypothesis would

be rejected at the .05 level.

Estimating Tii When There Is Misinformation

Among the 30:items analyzed by Wilcox (impresspress a), the observed

test scores suggest that two of the items do not conform well to the

AUC scoring model described in a previous section. Thus, the propose

estimate of T
ij

is inappropriate. This section illustrates how this

problem might be solved when a misinformation model appears to be more

appropriate for some of the items on the test.

Consider a test item with t alternatives, and let gt be the pro-

portion of examinees who eliminate the correct response from consideration

on their first attempt of the item. (An AUC scoring procedure is being

assumed.) Once the examinee realizes that he/she has misinformation

129
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about the skill represented by the item, it is assumed that the examinee

chooses the correct response on the next attempt. This assumption is

made here because it seems to give a good approximation to how examinees

were behaving on the items used in Wilcox (in press a). It is also

assumed that if an examinee does not know and does not have misinformation,
-^N

then he/she guesses at random among the t alternatives. Finally, for

examinees with misinformation, assume that they believe the correct

response is one of c alternatives that are in actuality incorrect.

Thus, examinees wi misinformation will require at least c + 1 attempts

before getting the item correct.

and c = 3. Then,

As an illustration, consider t = 5

P1 4t-1 4t+1/5 [38]

P2 4t+15 [39]

P3 4t+15 [40]

P4 tt4-t+1/5 [41]

P5 'f11/5 [42]

where 4.0.1 is the proportion of examinees who do not know and who do

not have misinformation.

del gave a good fit to the observed scores in Wilcox (in

2Th13press a), ut an,even more general model is possible. In particular,

let y be the population of examinees who have misinformation and give

the correct k'esponse once they have eliminated c = 3 alternatives. Then

P4 sCt 4t+15

P5 (1 r)ct t+115

[43]

[44]
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Various modifications of the model are, of course, possible and

presumably this model (with some appropriately chosen c value) will give

a good fit to the observed test scores. For illustrative purposes,

equations 38 - 44 are assumed hold. The point of this section is that

itisnmpossibletoagaineitimate. where the misinformation model

is assumed to hold for one or both of the items in any item pair. Note

that for a single item where equations 38 - 44 hold,

T t"-1 [45]

To estimate T
if the joint probability of making a correct decision

on a pair of items - Where, say, the first item is represented by z= mis-

information model, equation 7 must/be rederived. Accordingly, let t'

be the number of alternatives on the first item, and t is the number of

alternatives on the second. The misinformation model assumes that on

the first attempt of the item, examinees belong to one of three mutually

exclusive' categories, namely, they know the answer and choose it,

they have misinformation and eliminate the correct response, or they

do not know and guess at random. Thus, using previously established

notation, equation 8 becomes,

P /2 /2t /3t [46]ll 442 441V /3t' /440 402V 401 -001
where, in this illustration, t' = 5., There is no term (i = 0, 1, 2)

because the misinformation model assumes that if examinees do not know,

"they cannot eliminate any of the distractors. More generally,
t-1 t-1

Pll 4t1-1,t-1 ./ 4t1-1,i/(t -,j)ti j.1040j/(t j)ti [47]
j=0

Also

Pkl Pll 442 (k
t') [48]
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p12 = 441/2t1
440 [49]

= 1- 411 ./(t nt* (m = t-2) . [50]
j=0

The remaining pij values can be determined in a simildr manner. For the

two items being used here
m

P2m =. Cri.Jt (m = 2, ..., [51]
j=0

and \

P3m P2m

The express -ions forpr4m and p5m involve they proportion of examinees

who have misinformation on tne first item. Let 4t,j be the pro-

portion of examinees who have misinformation -about the firstritem

and can eliminate j distractors on the second (j = 0, , t-1).

Previous expressions for the pkm's did not, involve ct because the

111/
misinformation model being used assumes that examinees who have ids-

:

information will get the item correct on their fourth attempt.

Of course, as previously indicated, some modification of this model

(i.e., some alternative value for c) will probably be necessary when_

studying a different item-for which there is misinformation. The point

is that the pkm's can be expressed in terms of the cij's.

The remaining equations needed for the present situation are

P41 452 + 45142 + 450/3 + 402/5 + 401/10 + 400/15 [52]

P42 451/2 + 450/3+ 401/10 + 420/15 [53]

P51 402/5 + 40l/10 + 400/15 [5 4 ]

P52 401/10 + 400/15 [55]
.

P53 40005 [56]
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Thus, starting with equation 56,'too can be estimated by replacing p53

with its usual unbiased estimate, and the remaining 4's can be estimated

in a similar fashion. This, in turn, yields an estimate of Tij and so

bounds on pk can again be estimated as was illustrated in a previous

section.

Discussion

One feature about pk that might be disturbing is that generally it

is an increasing function of the Ws, the proportion of examinees who

know the ith item. Thus, one way to ensure that pk is close to one is

to use easy items. This approach certainly is not being recommended.

The view taken here is that the goal of the test is to determine which of

n specific skills an examinee has acquired. The idea is that the student,

or perhaps an entire group of students,can be given remedial work on

those skills they have failed to learn. If pk is small, and if it

appears that adding effective distractors is difficult to do, this

suggests that a Conventional scoring procedure is inadequate, and that

it should probably be abandoned. The possible replacements include

using completion items, the AUC scoring procedure used here, or

one of the many latent structure models referred to at the beginning

of the paper. These models make it possible to determine whether

is small (e.g., Wilcox, in press). If it is small, perhaps all of the

examinees should be given additional instruction.

.144111111MIN
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The results reported in this paper might also be useful when

empirically checking the assumptions of other latent structure models.

For example, Macready and Dayton (1977) and. Wilcox (1977) propose models

where it is assumed that pairs of equivalent items are available. Two

items are defined to be equivalent if examinees either know both or neither

one. When equivalent items are available, the proportion of examinees

who know both can be estimated (assuming local independence). Macready

and Dayton checked their model with a chi-square goodness-of-fit test, but

this requires at least three items that are equivalent to one another.

(When there are only two items, there are no degrees of freedom left.)

For illustrative purposes, assume t=3, and consider equations 8-16.

If two items are equivalent, then

421 420 412 402 ^ °

P12 P21 P22

P13 P23

and V

[57]

[58]

[59]

P31
p23

' [60]

and an exact test of these equalities can be made using the procedure

described in an earlier section. If one of these items is assumed to

be hierarchically_related to the other, again certain equalities must

hold among equations 8-16, and this can again be tested (cf. White and

11
Clark, 1973; Dayton and Macready, 1976).
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Table 1

Number of Examinees Requiring i Attempts on Item

1 and j Attempts on Item 2

1

Number of
Attempts on 2

Item 1

3

Number of Attempts on.
_Item 2

179 26 14

76 8 4

53 13 . 4

135
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ABSTRACT

es4.When determining the length ofa criterion-referenced t ,( results

in van den Brink and Koele (1980) an,e Wilcox (1980a, 1980b) inticateAhat

the problem of guessing might be more serious than may have,been expected

Recently, however, a new method of scoring tests was proposed that correct

for guessing wittiout assuming guessing is at random. Moreover, empirical

investigations suggest That the underlying assumptions of the new scoring

procedure will frequently hold., This paper indicates how test length

,might be determined when the new scoring procedure is used. The results

indicate that test length might be substantially reduced when the new scor-

ing rule can be applied.

*se
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1. INTRODUCTION

Consider'a single examinee and a domain of multiple choice test items.

Let T be the proportion of items the examinee knows, and let p be the exam-

inee's percent correct true score. In criterion-referenced testing a

frequent goal is determining whether an examinee's true score is above or

below a known constant, say wo. Usually the problem is formulated in terms

of p (e.g., Huynh,,I976; Wilcox, 1979), but recently attention has also

been given to the case where is is the true score-of interest(e.g.,

van den Brink and Koele, 1980; Wilcox, 1980a).

A basic problem with criterion-referenced tests is determining how

many items to include on the test.. Existing-solutions are summarized

by Wilcox (1980b). (See, also, Berk, 1980.) Although considerable progress

has been made, serious problems remain. ,The main difficylty can be summer-
3

ized briefly as follows: When the test length problem is formulated in

"terms of p, and a single examinee, the solution proposed IV, Fhan6r (1974)

may result -in-a, test that is not overly long.' However,, if the problem is

-posed in terms of T, and if guessing is assumed to be at random, van den Brink

and Koele (1980) show that-the test may have to be, substantially longer to

guarantee the same level of test accuracy as is Obtain'ed when the problem
ry

of guessing, can be ignored. Wilcox (1980a) notes that the problem is.much

worse than indicated by van den Brink and Koele: This is not surprising

because there is no particular reason to assume random guessing, and empir-

ical studies verify that such an assumption might be unreasonable (Bliss,

1980; Cross and Frary, 1977).
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Wilcox (1980b) indicates that theproblem of guessing might be par-

tially alleviated when latent structure models can be used to estimate T,

but there are clearly situations where such models are inappropriate'

(cf. Melenaar, 1981; Wilcox, 1981a). The result is that if multiple choice

test items must be used, an unrealistically large number of items might be

necessary in order to be reasonably certain of correctly classifying an

examinee whose true score T is close to the criterion score W
o.

This paper extends'existing test length solutions to situations where

il) an answer - until- correct scoring procedure can be used. An advantage of the

new solution is that it corrects for guessing without assuming guessing

is at random. In addition, the new results represent a substantial im-

provement over existing techniques when multiple- choice test items are

being used:

An Answer-Until-Correct Scoring Rule

Wilcox (1981b),proposed an estimate of T based on an answer-until-

correct scoring procedure. This subsection briefly reviews-the assumptions

andjustification for using this scoring rule.

Consider a multiple- choice test item with t alternatives, one of which

is correct. An answer-until-correct test refers to situations where an

examinee choose alternatives until1the correct one is identified. This

is usually o shed by having examinees erase i shield on an answer

sheet until the Correct alternative is chosen.

For a specific examinee and a randomly chosen Item, let pi be the

probability that the correct answer is chosen on the ith attempt (i.e., the,
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probability of i erasures is pi). Wilcox makes certain assumptions about

how an examinee behaves when attempting an item, and in terms of the pi's;

these assumptions imply that

P1 L P2 Pt
[1]

Empirical investigations made by Wilcox (1980c, 1981b) suggest that the

inequalities in equation 1 will frequently hold. For results on how to

characterize n-item tests, see Wilcox, (in press). For a strong true scorie

model, see Wilcox (1980c).

If equation 1 is assumed, a maximum likelihood estimate of T is avail-

able via the pool-adjacent-violators algorithm (Wilcox, 1981b). Here,

howeVer, there is no loss'in simply using the unrestricted maximum likeli-

hood estimate which is

(x1-x2)/n
[2]

where xi (=1,2) is the number of items for which the examinee is correct on

the ith attempt (i.e., the number of.times the e4minee erases i shields),

and n is the number of items on the test. The appeal of equation 2 is

that it estimates T without assuming guessing is at random, and as was pre-

viously noted, there is some empirical evidence that it is justified.

It should be noted that rr is theoretically justified because T can be

shown,to be equal to p1 -p2 when the assumptions in Wilcox (1981a) hold.

2. DETERMINING TEST LENGTH

This section extends the test length solutions oljhaner (1974) and

Wilcox (1979) to the answer-until-correct scoring procedure outlined above.

As in Wilcox (1981b) it is assumed that x
1
and x

2
have a multinomiaL

distribution.
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Consistent with previous test length solutions (Wilcox, 1980b), the

goal is to determine the smallest n so.that when T<Ir
0
-6* or when T>7

0
4.6*

the probability of a correct decision (PCD) is at least P* where W*<1

and Vc>0 are predetermined constants. In this section the decision T>no

is made if '-i>no; otherwise the reverse decision is reached. By convention,

either decision about T is said to be correct when T is in the open inter-

val (n0 -s *,-6* n0 46*). This open interval is called the indifference zone.

When T>mcs* the rule for deciding whether T is'above or below 7E0

means that

PCD =
n! k X x

xl!x2!(n-x -;x2) P22 q
1

(3)

where A={(x1,x2): xl-x2>nff13}, zxi=n, q=1-pl-p and where x.>0 (i=1,2,3).

When 1..<7
o
-*

n! xi X2 x3
PCD = E

x !x 10-x -x-)i P P q
B 1 2*

1-2!
2

where B= {(x1,x2): xiA -x2<nffo}.
A

To guarantee

PCD > P*

(4)

(5)

when T>n0 +6* or when T<IT0-6,,, we consider, as is typically done, the

worst possible case. That is, the value of r is determined that minimizes

equations 3 and 4. Then the smallest integer n is found so that PCD>P*.

It follows that equation 5 is satisfied for any value of T=pl-p2 not in

the indifference zone.
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Since the conditional distribution of x
1
given x

2
is binomial, it can

be seen that for T>70+6 *, the PCD is minimized when T=10 +6**, and when

T<70-6* the minimum,occurs when T=n0-8*. Consider, for example, the case

T>wo+e. The probability of xl given x2 can be written as

ri-X1x
1 1 On

(

f(X11)(2) =

1 -p2

n-x2 P2.T i [ ...-2p2-T

-2

Thus, the PCD is equal to

n-Ennof:-.1

E E f(x IX )ini px2(1-p )ri7x2
1 2 9 2 2

(6)
x
2
=0 x

1
=Ex

2
ifra

o_

where [x]
+

means the smallest integer greater than 'or equal to x. The

term f(x
1
Ix
2

) is the only one that depends on the parameter T. Also,

for each x2, and fiked p2, the second summation is an increasing fiunction

of T (see, e.g., Wilcox, 1979). Thus, the value of T that minimizes equa-

tion 6 with the restriction that T » r0 +6* is T=Ir
0
4.8*: The case T<Ir

0
-8* is

--

handled in a similar fashion, and in particular, the minimum PCD occurs

whin T=70-6*.

There remains the problem of determining the exact values of p1 and

p2 that minimize the PCD when pl-p2 is equal to ro-6* or wo-W. An

exact solution is not given, but it is possible to further limit the possible

values of p1 and thento use numerical techniques to solve the problem.

First suppose T=w0-e.

4I

ince p1 +peq=1, 2p141=11-w0 -6*. It follows

146
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11111 that the largest possible value for pl is pi=(1-1-70-S*)/2, and lacause of

the restriction on q, the smallest possible value is

In practice the closed rilferval [pi", pi] will be relatively short. For

example, if w0 =.8 and 6*=.l, rf=.775.. Since p2=p1 -wed* and

q=1-pl-p2, the PCD can be written as a function of pl, and the value of

pl that minimizes the PCD can be determined.

. A similar approach can be used for the case T=w04.6*. the lowest

possible value for p1 is

0-
w
0
+8*

t

*

and the largest possible value is (1-1-weei*V2.

Although the value of p1 can be determined that minimizes the PCD,

there will be instances where this will be inconvenient and possibly

expensive to do. Ho4ever, it is possible to obtain a conservative choiNab-

for n by\onsidering the case pi=(11-v0 -P)/2 and q=0. Then the PCD is

equal_to
x0 -1 .X0-

ini px(i_pi)n-x

x=0 txi 1

J

where x0 is the smallest integer greater than or equal to n(w04.1)/2.

This situation yields a conservative value for n is/the sense that for

values of T not in the indifference zone, ? achieves its maximum variance when

p1=(141r0-6*)fi and q=0.

147
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For this particular value of, pi, and Since q=0, results in Fhangr (1974)

and Wilcox (1979a), can be-applied. In particular, an Alpproxigiate solution

for n is

n= X

2

(1+7'0)(1-10)

(6*)2 (14)

where x is the P
*

quantile of the standard normal distribution.

Suppose, for example, P =.9, 6*=.1 and no= .8. To ensure that the
3

PCD>.9 for any T not in the indifference zone, equation 14 says that

approximately n=59 items are required. For P*=.95, n=97.

Wilcox (1980b) also considered the situation where 6*=.1 and P*=.9

but where the usual correction for guessing formula score was used. It

was found that varying the actual probability of guessing the correct

response had a 'substantial effect on the test length. In one instance, the

required test length was found to be 159, and in another it was 281. As

indicated above, an answer-until-correct scoring procedure requires only

59 items without assuming guessing is at random. Thus, the results reported

here are considerably more encouraging than those reported by Wilcox (1980b).

I
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a.

ABSTRACT

los°. fe

Fhaner (1974) proposed an 4proaeh toteasuring achievement where

the binomial error model, is assumed, and where the goal is to determine

whether an examinee's percent correct true score'ts above or below a

known constant. Wilcox (1980b); as well as van da-trink & Koele (1980),

point out that a substantially 'larger number of items mightle required

when guessing is incorporated into Fhaner's solution. The purpose of

this brief note is to derive the exact sampling distribution of a

closed sequential procedure that solves the problem considered by Fhaner.

We then show that the probability of a correct decision under the new

procedure:is exactly the same as it is.when Fhaner's procedure is

applied. In addition, the number of observations'under the closed

sequential procedure is always less than or equal to the number

required under the fixed sample size approach. In some cases, fhe

numlofir of obse'rvations is considerably less.

4

t
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In the context of mental test theory, Fhaner (1974) considered the

problem-of comparing a binomial probability function to a standard or

kAown constant. More specifically, it was assuied that arandom variable

x has a density given by

(1 ex (1-0)N-x

and that we want to determine whether e.is above or below a known constant

,r.f\e
0'

(For a recent review of the binomial error model, see Wilcox, 1981.) The s'

.

goal )n Fhaner's paper was to determine the minimum N so that simultaneously,

and

I ,

x00*

`N-x *
> P. , whenever e>e;+6*

v.,

(1-0)* xP*, whenever e<e -a÷

(2)

(3)

*
where'll <P <1 and a lir->flare predetermined constants, and n is an appro-

priately chosen passing score.

*We note that in 'recent years, the problem considered by Diener has
V

generated considerable interest in mental test theory. Wilcox (1980a)

summarizes existing results.

Suppose we choose n to be the smallest integer such that n/N>eo.

An asymptotic solution to determining N satisfying both equations (2)

and (3) is

2

N = A e
Q
(1-e

0
)/(6

*
)
2

where: the P, quantile of the standard normal distribution *Wilcox,

1979a). From (4) it is evident that N becomes indefinitely large as
*

approaches zero.
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When applying Fhaner's solution to achievement tests, it may be

necessary to choose esmall in order to take guessing cnto,account

(van den Brink & Koele, 1980; Wilcox, 1980b). This, in turn, might

mean that a relatively-large number of items will be required. One
11)

approach to this problem is to apply a sequential procedure, but these

are optimal under circumstances,that might not be met (e.g., Wetherill,

1966). Also, depending on the values of e and e
0
, it is possible that

the number of observations will be larger when a sequential procedure

is applied.

When a sequential procedure is used, it is common practice to avoid

taking an inordinately large number of observations by deciding in advance

the maximum number of-trials that will be allowed. In this event,

.however, the observed number of successes is not given by the negative -

binomial distribution, as it ordinarily would be (e.g., Wetherill, 1966),

and so we do not know the exact probability of a 'correct decision about

whether e' has a value above or below e .

For the reasons given above, we consider a closed sequential

procedure for comparing to to eo., t, we-suppose that N and n are

determined in to anner already described. Here, howeirer, observations

are assumed to be taken one at a time until there are n successes or

m=N-ni-1 failures. Let x be the number of successes and let y be the

number of failures when sampling is terminated. Rote that either x=n,

in which case the possible values of y are °,1,....,m-1; or y=m and

the possible values ot,.x are 0,1,....,n-1. Our decision rule is that



e>ao when x=p; otherwise we decide that a<00. The purpose of this brief

note is to show that the probability of a correct decision-tnder this

closed sequQntial pl-ocedure is exactly the same' as it is under the fixed

sample size solution proposed by Fhaner (1974). We al s9 note that the

expected nymber of observations for the closed sequential procedure might

be substantially less than what would otherwise be required. For related

results, see Ailing (1966), Armitage (1957), Spicer (1962), Wald (1947),

Anderson & Friedman (1960).

The Joint Distribution of x and y

Let xi .=1 or 0, i=1,.... be a sequence of independent trials where

Pr(x.=1)=0. The exact distribution of x and y can be derived as follows:

If x=n, then by the multiplication rule of probabilities, f(x,y(e),

the joint probability of x and y, is given by .

f(x,y1e) --,iin;1÷3.1 en-1 (1-0)Y-e

in-n1y) _n xv
u (1 -ur for x- y=0, ..., m-1.. (5)

I

In a similar fashion

f(x,y18) = (m;!Ix] (1-0)/71. ex for y-m, x =0, n-1. (6)

-4- 155
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The relationship between the closed sequential procedure

and Fhaner's fixed sample size solution.-

n-1 tr m

h(e) = E ex (1-0)
N-x

, (30
0

x=0 .A

[J

xi, A-x
8 0.-81 ,

8>80

x=n

In other words, for fixed N, n and any 0, h(e) is the probability of

correctly determining whether the value of,e is above or below eo. We

show that the probability of a correct decisidn under the closed sequen-,

tial procedure is given exactly-by h(e). That is, the eccuracy,of both

procedures is the same, 'regardless of the value of 0.

Suppose the closed sequential procedure is applied and that e<eo.

Then the probability of a correct decision is

'Pr (y=m1e)

=
n-E 1

n-14-xl (i_c)m ex
mr1

x=0

From Patil (1960), this is equal to

m-1
(m+n-1)!

x 0
xl(m+n-x-1)!

=

(,1_0-X
8114-M-1 7X

m-1
NI

= 1 - .E
(

j! `

1_0x eN-x
x(N-x

X=0
l



= 1 - 1 -
Nm
z N! x

(1-e)
N

x=0
x!(N-x)! e -xi[

n-1
=

xE

N!
ex(i-e)

N-x
x!(N-x)!

=0

= h(e).

For similar reasons, Pr(x =nle) = h(e) when e>eo. This completes the proof.

Next we note that the number of observations under the closed sequen-

tial procedure is at most N, and on the average it is less. Now much less

will, of course, depend on e and 80. In some cases, the amount can be

substantial.

Suppose, for example, N=100, 80=.8 in which case we'set n=80.,and

m=21. The number of observations under the sequential procedure ranges

from 21 to 100. Following,Fhaner (1974), suppose an indifference zone

formulation of the problem is used with 6*=.05. From equation (4), an

approximate lower bound to the probability of a carect decision is .894

when the fixed sample size. procedure is used. The results, given above

indicate that the same is true when the closed sequential procedure is

applied.

Figure 1 shows a plot of E(x +y), the expected number of observations

using the closed sequential procedure. As is evident, for certain values

of 8, E(x+y) is consiably less than 100. As already noted, because

of guessing, even smaller values of (5* might be deemed appropriate which

will increate the required value for N. Thus, the closed sequential pro-

cedure might be an important and valuable tool in many situations. Figure

2 shows a plot of E(x+y) when 80=.5, n=50 and m=51.
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Concluding Remarks

The new procedure might require the same number of observations as

Fhaner's, but this will be highly unlikely, particularly when N is large.

On the' average, the {umber of observations will be smaller, and in some

cases, by a substantial amount. Thus, it might be possible to reduce the

difficulties pointed out by Wilcox ( 1980b), and van den Brink & Koele

(1980). Of course-at least N items must be available, and any sequential

procedure would seem to be inconvenient in certainsituations. However, with

the current interest in computerized testing, the results reported here

might be useful.

We also note that for a population of exithinees,'our closed sequen-

tial procedure is easily extended to the empirical Bayes framework con-

sidered by Wilcox (1977, 1979b).. In particiular, suppose the prdbability'

function of every examinee's observed score is given by equations (5) and

(6). It is readily verified that

x

x +y

is a maximum likelihood estimate of 6. Therefore,'62 is a maximum like -

lihood estimate of e2 (Zehna, 1966). Let gi be the maximum likelihood

estimate for the ith randomly sampled examinee, i=1,...,m. It follows

- 1 -
that M

1
=m ze. and M

2
=m-'zi? can be used to estimate the first and second

1

moments of the distribution of e over the population of examinees.

If we assume the density of e belongs to the beta familywe can

also estimate test accuracy as is done by Wilcox (1977) and we can esti-

mate test reliability in the manner described by Huynh (1976) by noting

that a negative binomial density function compounded by a beta distribution



yields the inverse 061ya-Eggenberger probability function (e.g., Sibuya,

1979). The details are straightforward, and so-further comments are not

made.
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l
Wilqw (19 ) proposed a latent structure model for answer-until-_

.

correct tests that can solve various measurement,probfems includirecorrect-
.

ABSTRACT

. ing for guessing without assiming guessing is at,random. This piper.pro-

poses a clbsed se en arocedure for estimating true score that can-be

used in conjunction with an answer-until-correct test. For criterion-

referenced tests where the goo' is to, 'determine whether an examinee's
4'

true score is above or below a'known constant, the accuracy of the, new

procedure is exactly the same as a mors.conventional sequential solution..

.N
The adOptage of the new procedure is that it eliminates the possibility

of using nqrdin'aA large number of items !hen in fact a large number. .

1f items is not needed; typical sequential procedures always allow this

possibility. In addition, the new procedure appears to compare favorably

to traditional tests where the number of items to be administered is

fixed in advance.
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1. TITITII,ODUCTION

Consider a multiple-choice hest item with t alternatives, one of

which corresponds to the correct response. Uatir an answer - until- correct

2

(AUC) scoring procedure4 an examinee chooses alternatives until the correct

response is selected. In the past, this has been aCtomplihed by having

0
the examinee erase a shield on an answer sheet; the examinee knows imme-

diately whether the correct response was chosen. If it was not, the

examinee erases another shield, and this proCess continues until the,cor-

.reCt'alternative is chosen. Another, way of administering AUC tests is with
;

a recently developed pen that is used in conjunction with a specially'

treated answer sheet. The examinee marks his/her selection which causes

a previously invisible mark to appear on the answer sheet. If the mark

signifies an.incorrect choice, aho her alternative is chosen. An optical

scanner can then beused to,count the number of attempts an examinee took

on each item of the test, or, of course, the test.n be scored by hand.

A third way of administering AUG tests, and the-otle that is particularly

relevant to this paper, is by computer.

AUC tests appear to have several advantages. Past investigations

a-
suggestthey enhance learning (Pressey, 1950), increase reliability (Hanna,

1975; Gilman & Ferny, 1972), and under certain assumptions,, they can be
. .

d'to correct for guessing without assumi g guessing is at random (Wilcox,

irc
. 0

19 la). iOme implications of th6 assum ions made by Wilcox (1981a) have

been empirigally investigated, and the results 'suggest they are frequently

reasonable (Wilcox, in press, a).'

A
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The ability to measure and correct the effects of guessing is parti-

cularly tmportant.in criterion-referenced testing where the goal is to

determine whether an examinee's true score is above or below a known

constant (van den Brink & Koele, 1980; Wilcox, 1980). Because of guessing,

an unrealistically lane number of items might be required to ensure a

reasonably accurate test.

The goal in this paper is to describe a closed.sequential testing

procedure that might be used in conjunction with Wilcox's correction for

guessing formula score. The results reported here generalize those re-

ported in Wilcox (in press, b). To help motivate the new procedure, a

traditional sequential procedure is also discussed.

While the potential advantages of sequential procedures is..knOwn

(e.g.* Wetherill, 1975), they have the practical disadvantage of possibly

requiring an even larger number of observations than would be used under

a fixed sample size approach., On the average-this may not happen, but there

is a positive probability that a sequential procedure will' need more obser-

vations. Usually this problem is avoided by deciding in advance the maxi-

mum number of observations that will be allowed under a sequential procedure,
;17

but in this case the?appropriate probability fUnction may not be known

I
The closed sequential procedure described below is intended to correct

this prof' em when an AUC test is being used.

2. ASSUMPTIONS AND GOALS

This section gives a more precise description of the assumptions

4-11-

being made and the goals of the test.

Consider a domain of skills, and suppose every skill is represented

by a multiple choice test item having t alternatives frop which to choose,

4
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4
4.

one of which is correct. Let T be the proportion of skills a specific

examinee has'acquired, and let p, (i=1, y) be the probability that Cie
1

examinee chooses the correct response on the ith attempt of a randomly
,

chos6 itent Wilcox (1981a) assumes that if the examinee has acquired the

skill corresponding to a randomly sampled item, he/sht gives the correct'

response on the first attempt. If.the examinee does. not know, it is assumed

that at most t-2 distractors can'be eliminated, and that the examinee

guesses at random from among those that remain. This is, of course, an

over simplification of reality since the model does not allow for misin-

formation, nor the possibility of knowl g and inadvertantly choosing an

incorrect response. Other 'latent 'structure models have been proposed

that include errors'at the item level such as misinformation, but these
,

mode,ls make-certain assumptions that may not hold in many situations.

(See Molenaar,N1981; Wilcox, 1981a; in press b.)

Based on the above assumptions, it has been shown that T=pl-p2
o

(Wilcox, 1981a). This suggests that for an AUC scoring procedure,- if there

are x
1
items for which the examinee is correct on the.first attempt, and

if there are x
2

items for which the examinee is correct on the second

attempt, T might be estimated with

T = (x1 -x2) /n (240.)

where n is the number of items on the test. The appeal of equation 2.1

is that it corrects for guessing without assuming guessing is at randora.

Wilcox's model implies that

4

P 1 P2 '1 L Pt (2.2)
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and empirical investigations suggest that this inequality will frequently be

reasonable (Wilcox, in press a). Note that if (2.2) is assumed, a maximum

likelihood estimate of r, assuming xl and x2 have a multinoMial distribution,

can be obtained via the pool-adjacent-violators algorithm (Barlow, et al.,

1972) which is

(x
1
-x

2
)/n, x

1
.._x

2
T =

0, otherwise
2.3)

The two most common goals of a criterion-referenced, test are esti-
:

mating true score, and determining whether r is above or below a known

constant, say To (Hambleton, et al., 1978). The remainder of the paper

considers these problems when a sequential or closed sequential procedure

is used to estimate T.

3. A SEQUENTIAL OR INVERSE SAMPLING PROCEDURE

This section s )jmmarizes some existing results on estimating pi under

a conventional inverse sampling procedure. The main reason for including

this section is to motivate the closed sequential procedure described in

section 4.

Here it is assumed that an item is randomly sampled and the examinee

responds to it according to the AUC scoring procedure previously described.

Once the examinee identifies the correct response, another item is randomly,

sampled and administered, and the process continues until there are N items

for which the first alternative c(osen by the examinee is the correct

response. Once sampling is terminated, let y2 be the number of items for

which the examinee chooses the correct response on the second attempt of

an item, and let y3 be the number of items for which more than two attempts
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wereeneeded. The probability function of y2 and y3 is negative multinomial

ich is givdn by

S

(N-1-1-y2ty3)! y_ y

f(312)31311)1°2) y2!y3i(N-1)! p1 p2Z q 3 (y2,y3=0,1,...) (3.1)

where pl and p2 are defined in section 2, and q=1-pl-p2 (e.g., Sibuya, 1964).

Properties of this distribution are summarized by Sibuya (1964), Mosimann

(1963), and Johnson & Kotz (1969). See, also, Olkin & Sobel (1965), Olkin

(1972), and ifoullos & Sobel (1966).

The maximum likelihood estimates of p1 and p2 are iii1/(N+yey3) and

1:12=y2/(N+yey3), respectively. As previously mentioned, T=pl-p2, so the

maximum likelihood estimate of the examinees true score is .fc--(N-y2)/(N+y2+y3)

(Zehna, 1966).

consider the problem of determining whether T is above or below To.

The pbvious solution is to decide T>T0 if and only if ;>T0. This is the

typical type of decision rule used with criterion-referenced tests, and

it is the solution used here. Thus, for T>T
0'

the probability of a corfect

decision (PCD) is

R = E f(Y2431P102)
A

(3.2)

where A={(y2,y3): T>T0}. For T<T0 the PCD is just 1-R.

Given p1 and p2, the PCD can be compared to the usual fixed sample

size solution,'and some comparisons are made in the next section. The

expected number of observations is also easilS, computed, and it is given by

N+(p2+q)/pi.
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An appeal of sequential procedures is that the expected number of

observations can be substantially less than what is needed under a fixed

sample size approach. However, as previously indicated, there is a posi-

tive probability that the actual number of observations will be lrge.

In practice this problem is avoided by determining in advance the maximum

total number of observations that will be allowed. However, if sampling

is terminated when N +y2 +y3 reaches a predetermined value, the joint pro-

bability function of y2 and y3 is no longer given by the multinomial

distribution. The next section proposes a possible solution to this

problem when determining whether T is above or below 70.

4. A CLOSED SEQUENTIAL PROCEDURE

Suppose the sequential procedure in section 3 is used in which case

T<T
0

is decided if

N-y2

N
+y2 +y3

TO

0
Rearranging terms, the decision T<T0 is made if

N(1-To) < (1 +T0)Y2 ToY3
(4.1).

Thus, once (14-r0)y2 > N(1-T0), or Toy3 > N(1-T0),,there is nd'point in

sampling more items because the decision T<T0 will be made no matterhow

well the examinee performs on the remaining items.

Next suppose the inverse sampling scheme is modified so that sampling

terminates when y N, or y2 =4 or y3=m where y1 is the number of items

for which the examinee is correct on th first alternative/chosen. For

the moment M and m represent arbitrary integers.



The joint Probability function of y1, y2 and y3 can be derived in the

same way as was the distribution in Wilcox (in press, b), and so the details

are not 'given. An alternative derivation is also available by viewing the

process as, a random walk on a three dimensional lattice, but again the

details are relatively.straightforward, and so they are omitted. The

result is that the joint probability function is given by

(N-14y24-Y3)! N Y2 Y-3

(Y1 (4.2)=1450.g2<M,053<m)
(N-1)!Y2-Y3. 1 2

(y1 i-M-1+y3)! Y1 M Y3
3,

(05,<N,y2=M50.33<m)
P P2 q

11(m-1)!y3i

(Y1-1-Y2-1-m-1)1
y1

Y2 m
(n< 14 0< <M, =m)q

<5 -.1v 2 -v 3
YllY21(m-1)1 pl

P

2

(4.3)

(4%4)

The discussion of the decision rule under the sequential procedure

suggests that the closed sequential solution be used with M.N(1-1.0)/(14-1.0)

and m=N(1-T0)/T0. If sampling terminates because y2=M or y3=m,occurs, the

decision T<T0 is made. If sampling stops because y1 =N, decide T>T0 if

and only if (N-y2)/(N+y2+y3)>T0. This is the same decision rule used

under the sequential procedure described in section 3, but this rule can be

justified based, solely on the probability function in equations 4.2,

4.3 and 4.4. To see this, note that the maximum likelihood estimate of

pi(i=1,2,3) under the closed sequential procedure is

Yl+Y2+Y3

172
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where one and only one of the yi's has attained its maximum value. By

the choice of M and m, the decision T<T0 is made if y2 =ti or y3=m because

equation 4.5 yields an estimate of T=p1-p2 that is less than T0. If

the decision T>T0 is reached if (N-y2)/(Nty24-y3)>T0.

The above di's/cussion reveals the important result that the PCD under

the closed sequential procedure is exactly the same is it is under the

sequential procedure. To see this, note that for T>T0, the PCD under

the clbsed sequential procedure is

N
-y24

N 31 ... Y3

A N+Y2tY3 1 2

z
(4.6)

which is the same as expression 3.2. It follows that the PCD is also the

same under the two procedures for T <T0.

A Comparison of the Fixed Sample Size and Closed Sequential Solution

For a convTional item sampling model where the total number of items

is fixed at n, the random variables xl and x
2

, which were defined in section 2,

have a multinomial distribution. Thus, when comparing T to To and when

T21-0, the PCD is

x, x,

niplp2q I
B xl!x2!(n-xl-x2)!

(4.7)

where B={(xl,x2)

this quantity.

-x2)/n>T0 l. ForT<T0 the PCD is just one minus

To 5ompare the fixed and closed sequential procedure, the PCD was

calculated for n=14, N=10, Tea, Pr. and .075.92.15. This interval

for p2 was used because it is consistent ith the assumption in equation

2.2 when p1 -.85. The results are shown in Figure 1 where tfie curve PS and

P are the PCD under the closed sequential and fixed sample size procedure,

17j
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respectively. As can be seen, the closed sequential procedure is consis-

tently better. As an additional comparison, the PCD was computed for

p1=.7 and .15.92<.30. The results are plotted in Figiire-_2 and again the,

closed sequential procedure is consistently better.

CONCLUDING REMARKS

It has not been shown that the closed sequential procedure will always

improve upon the fixed sample size approach to criterion-referenced tests

when Wilcox's answer-until-correct scoring procedure is used. However,

all indications are that given n, we can choose N, M and m so that the

number of observations under the closed sequential procedure will be at

most n, and yet it will give superior results. Moreover, the expected

number of observations will be less. Thus, in situations where computer-

ized testing is feasible, it would seem that the closed sequential proce-

dure should be given serious consideration.
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ABSTRACT
4

When comparing k normal populations, an investigator might want

to know the probability that the population with the largest population

mean will have the largest sample mean. Put another way, what is the

probability of correctly identifying the most effective treatment?

The paper described and illustrates methods of approximating this

probability when the variances are unknown and possibly unequal. The

results described herel6n also be used to measure the extent to which

the populations differ for one another.

I

4.

A
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b
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Consider k normal distributions with means 14 and variances

al (i=1,...,k). In psychology aid education it is'common practice to

test the hypothesis that if the null hypothesis is rejected,

there are many instances when an investigator' wants to determine which

of the distributions has the largest mean. If for example, three

methods of treating depression are being compared, or perhaps three

methods of teaching statistics, an investigator might start by testing

whether the population means are equal. If the null hypothesis is

rejected, interest shifts to determining the most effective method.
1.1

The obvious choi-ce is the treatment with the largest sample mean. Once

a treatment has been selected as the one most effective, it is only

natural tp want to determine the probability that the most effective

treatment was indeed selected, i.e., we want to determine the probability
$,

that the distribution with the largest population mean will have the

0 largest sample mean. Note that if this probability were known exactly,

we would have a measure of the extent to which the treatments differ

from one another (cf. Hays, 1973, pp. 481-491, Cleveland & Lachenbruch,

1974).

Typically, the approach to the problem just described is from the

point of view of designing an experiment (e.g., Gibbons, Olkin, &

Sobel, 1977). In particular, procedures have been devised for deter -

emining how many observations are needed so that an investigator can

be reasonably certain that the most effective treatment is identified.

The normal case has been considered hylipechhofer (1954), Bech"hofer,

Dwnett and Sopel (1954) and Dudewicz dud Dalai (1975). These solutions

are similar V determining pdwer, 64t t6 re are important differences.

181
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Also, these solutions are highly conservative in the sense that if

2

P[k]-11N-13 > d* the probability of,a correct selection is at least

P*.where p[k]1...>un3 are the population means written in descending

order and where 6* and P* are predetermined constants. The value of

6* represents thp smallest'differencp between p[k] and p[k_1] the

experimenter believes worth detecting. In actuality the difference

P[k1-P[k-11 might be consid ?rably larger than 6* in which case fewer

observations are really needed to guarantee that the best treatment

is selected for use.

Recently, Tong (1978) proposed an adaptive sequential approach to

the problem of identifying the most effective treatment for the case of

normal distributions having.a common known variance. The-motivation

for the procedure is to take advantage of situations where p[krim

(i=1,...,k-1) is large. The basic idea is that if the population means

are substantially different fewer observations are needed than when

the differences are small,.say equal t6-6*. A crucial step in applying

this solution is estimating the probability that the distribution with

the largest population mean will produce the largest sample mean. A

method of estimatir this value is available, but it requires numerical

quadrature which can be rather expensive to use. Accordingly, Tong

uses bounds On this probability (01T, Sobel, & Tong,_1976) that

are easily computed. The purpose of this paper is to describe,,and

illustrate methods of estimating similar bounds when the 'vaiiances are

Unknown and unequal.



Description of the Procedure

1

Let .xij (i=1,...,k; j=1,...,n+1) be n+1 randomly sampled observa-

tions from the ith normal distribution. Compute xi x4./n,

2

1

' j=x 1.3

s. = (xij
1

- R.)
2
An - 1). For technical reasons explained below, it

is necessary to assume that n+1>s.2 . This is not a serious restriction
1

in practice since the possible values of xij are usually bounded. If,

for example, there are known constants a and b such that 0<a<x..1J<b,

and if every xij is divided bya+b, si
2
will be less than one, and the

results described below can be dpplied.

Next compute

x2 = y
j 13 1J

where

and

= 1 - nc.a
i,n+1 1

a., = a. = = a = c
11 12 in i

n + ,n2 - n(n fl }(1 - sT2)
_

ci

n(n + 1)

3

For technical reasons Dudewicz and Dalai select the treatment with the

(1)

largest xi value as the one that has the 1. rgest mean. In practice this

will usually be the same as selecting the treatment with the largest

sample mean.
f-1-*

If x(iris the value of40).for the populations having mean um,

then` the probability Of a correct selection (PCS) is the probabi;litv

that the*distributionxith mean um will have the largest x value. This

probability is given by



Pr(x(i) i=1,...,k-1)

= Pr(X(i) -
u[i]

u[k] + &i, i=1,...,k-1)

i/

where Si= um-n[i] (i=1,...,k-1). From Dudewicz and Dalai (1975,

p.38), xi-1103 has a t distribution wi;th v=n-1 degrees of freedom.

Thus, (2) ,is equal to
k-1

I- n F
v
(z + 6.)f (z)dz (3)v

(2)

i =1

where Fv and fv are the cumulative distribution and density function)

respectively, of a t distribution with v degrees of' freedom. (En

Dudewicz and Dalai's notation we are setting h=o1c=1.)
.

From a theoretical point 9f view expression (3) follows from

Theorem 4.1 in Dudewicz and Dalal which assumes that a two-stage

sampling procedure is being used. In the first stage n observation

are taken, and the second stage consists of taking ni-n additional

III/0
observations sampled from the ith normal population where

max [n + 1, s?]

A slightly more general expression for ci is also required, namely,

ni 1 +An., - 112 - (ni 1)ni(1 - si2)

c

(n - 1)n
i

In many situations a two-stage sampling proCedure may be.expensive or

4mpractical, and so we have outlined how this problem might be avoided.

However, when sampling is from a truly normal distribution, a two-

stage procedure must be used in conjunction with' the more general ex-
9

pression for c.. J
To estimate the probability of identifying the most effective

treatment, i.e., the probability that the population with mean n[k]

4.11MR.M11..T...
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III/1

..

produced the largest xi value, simply replace Si in equation (3) with
.

6.=Li-L...,,,,,there,..-iis the sample mean corresponding to the
1 Lki Lii RL1J

population that produced the ith largest xi value.

Boundi on the Probability of a Correct Selection

So far, nothing particularly new or unusual has been described;

we have'merely followed the developments.in Olkin, Sobel, and Tong

(1976). The only difference is that the procedure in,Dudewici and Dalai

(1975) was used to handle the unknown and possibly unequal variances;

Olokin et al. assume the variances are known. The main concern in this.

section is evaluating (3). This can'be done with numerical quadrature

techniques (e.g., Dudewicz, Ramberg, & Chen, 1975), but this can be

expensive, particularly when the degrees of freedom are small. Accordingly,

we derive upper end lower bounds on (3).

Our main result can be described as follows: Let

Pi = r Fv(z 6i)f,(z)dz

qi 1 Pi

qij = 1 4- pipj - pi -Pi

k-1 .

Q1
1 =1

qi
1

Q2 = max T qi. , where the summation is from 1 to KA:

Values of the integral in the definition of pi are given in a table in

Dudewicz and Dalai (1975, p. 52). Recalling that the PCS is givenRecalling

by (3), it will be shown that

PCS > 1 - Q
1

Q
2

24,

(4)



To establish i4), the following definition is required. Let

A.(al,....,ak) and B=(bi,...,bk) be any two vectors, and let app[2]...?a[k]

and b
[11-

>b
C2

>. .>b
[k]

be the components of A and B written in ascending-
order. A function (I) isSchur-concave if

b

i 1 i=1 [1]=

and

a. b

1=1 1 i=1

i

implies that

(e.g., Marshall & Ol ki n, 1979).

for r=1,...,k -1

F4Qm Theorem 6.2.5 and Corollary 1 in Tong (1980, pp. 110-111) we

havethatilF(z+SjisaSchur-concavefunctionofthea.'s which
i=1 n 1

1

e
implies that (3) is Schur-concave as well. Thus, an upper bound to

(3) is

J Ft-1(z -1- g)fv(z)dz (5)

k-1

where (s = /(k-1). The integral in (5) can be evaluated,yia the tables
1=1

in Dudewicz and Dalai (1975).

From Kimball (1951) a lower bound 0'0) is
k-1

n F"(z si)fv(z)dz . (6)
Vi=1

But Theorem 7.1.4 in Tong (1980; p. 147) implies that

PCS > 1
Q1

max F(z 6.)Fv(z 6,)fV(z)dz:.

j

Applying (6) to, the sun cation in this last inequality establishes (4).

For certain refinements of (6), see Olkin, Sobel, and Tong (1976).



Some Illustrations

To illustrate how the bounds on the PCS compare to the actual

value, Monte Carlo techniques were used to evaluate (3) using arbi-

trarily chosen si values. Column 1 in Table 1 shows the resulting

approximations to (3) based on 2,000 iterations. Our computer program

was checked by approximating some of the values in the tables reported

by Dudewicz And Dalal (1975).

Table 1 suggests that when the value of (3) is r1Ntively small,

the upper bound given by (5) will be fairly close to the value of (3).

More importantly, when (3) has a value close to one, the bounds given

by (4), (5), and (6) yield a reasonably short interval which contains

(3). The implication is -that if, -for-example, we want to know whether

the estimated PCS is at least .95, (4), (5), and (6) may give a fairly

good indication of whether this is true.

As a final illustration, we reanalyze some data in Winer (1971,

O. 153). The goal was to compare three methods of teachings and the/A-7-77)re .

were 8 observations fat each group, The observed scores are shown in

Table 2.

Using the first seven observations in each group, we fibd that .

A I
C = 2855, c2=.2959, and c3 .2852. Thus, x1.-.7060, x2=4.112, and x3=6.148,

A and so according to the procedure in Dudewicz and Dalal, method 3

would be chosen as the most effective. (It is readily veriftevl-that

s.2<7 for i.--1, 2 as was required.) The question arises as to how certain

3 we can be that method (3) is indeed the best. Since 511=4.75, .i.2.4.625,

. and x3=7.75, we have that 61--3.0 and 62-3.125.. From a table in Dudewicz

;and Dalal (p. 53), the value-of (5) is approximately .93. The lower

e
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bounds given by (4) and (6) are both .925. Thus, in this particular

instance, we have a very good approximation to the estimated PCS.

If an investigator wants the PCS to be even higher, the data indicates

that additional observations must be taken. *w

Concluding Remarks

It is possible to sequentially estimate the PCS by applying the

procedure described here in the manner proposed by Tong (1978). Many

of Tong's theoretical results extend immediately to the present situation,

and so fur her comments are omitted.

Anoth point is that there are alternative choices for the ci

values (e. ., Dudewicz, Ramberg, & Chen, 1975), but at present,there

seems to be no compelling reason for choosing one procedure over

another. For a third possible procedure, see Bishop and Duilewicz (1978).

Henery (1981) proposed a method of esti ng the PCS when the

1.s

distributions are normal with a common kno n varian] . We checked

the accuracy of this procedure by approximat g various values in the
---,..--

...

tables reported by Bechhofer (1954) -- similar checks were not made by

Henery. We got 11"ftsonably4Q results for k=2,3 and when the PCS was

k less than or equal to .82, but otherwise the approximation was very .

poor. Despite this/negative finding,, a modification of He4ry's pro-
.*

t.

cedure wasetried on the case of unknown and unequal variances, but there
i

r\ is no indication that it would ever ,have any-practical value. At the
\---,

moment, the best approach seems to be to use the bounds on the PCS

given by (4), (5), and (6).

Finally, as alluded to earlier, the results given here can be used

to measure the extent to which k.normal populations differjrom one



another. If 111=112= ... 91k, the PCS is e a1 to k-1 its miminun

possiblevalue.AsOes.1 values increase so does the PCS (cf.

Hedges, 1981).

1

d
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Approximate
Value of (3)

)

,

.470

.508

.981
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.592

.815

.991
1

<827

TABLE 1

Illustratire .Bounds on (3) for n = 10.

4,-

,.
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Val ue
of (4)

Val ue Value
of (5) ,...of (6)

4,

.5 1.0 1.0 .306 .470 r
.5 1.0 1.5 :364 .5 .391

3.6 4.2 5.1 .977 s 85 .97

3.3 4.1 4.2
, .

r.964 74 .965

1.1 1.4 1.6 1.7* .407 N00 .459
..

2.0 2.1 2.7 2.9- .747 .830 .755

4.3 4.7 5.1 5.9 .988 .9 2 :918

1.7 2.8 3.4' 3.5 3.9 .790 95 .792
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TABLE 2

Method 1 Method 2 Method 3

'3 4

5

6

4 7

2 --8

4 8

8 7.. 7

4 4. 9

3 2 10

9 5'. 9

'

4
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C.

ABSTRACT

Based on recen published papers, one might be tempted to routinely

apply the.beta- binomial model to obtain a single administration estimate

of the. reliability of a mastery test. Using real data, the paper illus-

trates'two practical problems with estimating reliability in this manner.

The first is that the model might give a poor fit to data which can seri-

ously affect the reliability estimate, andthe second is that inadmissible

estimates of the parameters in the beta-binomial model might be obtained.

Two possible solutions are described and illustrate).
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1. INTRODUCTION

In recent years, efforts Fyave been dil-ected toward deriving ways of

studying and characterizing mastery and criterion-referenced tests. A

summary of the statistical and psychometric techniques that have evolved

can be found in the 1980, special issue of Applied Psychological Veasurement

(see, also, Pambleton, et al., 1978). One approach that has, received con-
)

siderable attention can be describeci as follows: Suppose two randomly

parallel test forms both consist of n dichotomously scored items. For

a randomly sampled examinee, let x and y be the observed scores on the

two test forms, and let f(x,y) be the joipt probability function of x

and y for the pOpulation of examinees. If the same:passing score, say

x0, iA used on both test forms, the proportion of agreement is defined

to be

n n
y0 -1 x0-1

P= E E f(x,y) +, E . E 'f(x,y) .

x=x0 y=x0 ' x=0 y=0
(1)

Many other methods have been proposed for characterizing mastery tests,

but at a minimum we want P to be reasonably close to one.

Frequently it is difficult to administer two randomly parallel tests

to a random sample of examinees,. Accordingly, efforts have been made to

derive an estimate of P based on the observed scores of only one test

form. A general approach to this problem is as follows: For a specific

examinee, assume the probability of an observed score x is f(xle), where

o is some unknown parameter, possibly. vector valued. For the randomly

parallel test, let fCyle) be the probability of an observed y, and sup-

pose f(xle) and f(yle) are independent and they fiave the same Wametric

1961
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form., If Ae) is the density function of a over the population of exam-
.

inees, then

f(x,y) = If(xle)f(yle)g(e)de. , .(2)

'Once a specific form for f(xle) and g(e) is assumed, it is frequently.

possible to estimate g(e) which yields an estimate of f(x,y). This in.

turn, yields an estimate ofy via equation (1).

In the statistical literature, the Angle administration estimate of

P desCribe above is Icrarin as an empirical _ayes_ approach to prediction

analysis. For general results do prediction analysis.,, see Aitchison and

Dunsmore (1975

Huynh (1976pas given a detailed account of how to estimate.P

for the special case where f(xle) (and f(yle)) are assumed to be binomial,'
-,

and where g(e) is assumed to belong to the beta family of distributions.

Note, how4er, that Huynh concentrates on estimating Cohen's'kappa (Cohen,.

1960), rather than P, once the estimate.pf f(x,y) is available (cf. Divgi,

1980). Since Huynh's paper, several investigatiods of the beta-binoMial'

model have been reported that are relevant to estimating reliability via
,

equation (2). For example, Subkoviak (1978) compared it to three other
,-

,estimates of P and concluded that all four methods gave good results,

but that the beta-binomial model seemed to be the

%st

for general use.

oAdditional empirical support for the beta-binomial del can be found in

)Gross and Shillman (1980). For further results and comments on P 'see

Algina and tide (1978), Huynh q979), Divgi.(1980)_, Traub and itowley (1980),

and Subkoviak (1980). For a recent review of the beta-binomial model,

see Wilcox (1981).

1 197
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Based on the studies cited above, one might be tempted to routinely

apply, the beta-binomial model when estimating the proportion of agreement

or some related coefficient such as Cohen's'kappa. In practice, though;

there are at least,two practical problyms that might arise. First, the

beta-binomial model might give a poor fit to the data (Keats, 1964a) -

which, as illustrate low, might affect the estimate of P. Second,

the estimate Of the parameters ii thebeta-binomial model light be inad-

missible. That is, they might Knegative even though the model assumes

thely. are positive. Negative, estimates ca occur even when the model

holds, or they,night occur because the mo el is completely inappropriate.

In some instances it might be possible to correct this problem by replacing

the estimates used by Huynh (1976) with the approximation to maximum like-
,

4

lihood gstim tes described by,Griffiths p9731. However,-Griffiths iter-
;

etive estimation procedure might not correct the problem since it can

converge to inadmissible estimates even when the model holds (Wilcox, 1979). .

. The purpose of this paper is to describe and illustrate a partial solution

to these two problems.

2. TWO ALTERNATIVES TO THE BETA-BINOMIAL MODEL

/
ry

Temporarily consider a single examinee responding to n dichotomously scored

items. The binomial error model assumes that

f(xle).= exa-o)n-x ( 3)

This assumption is theoretically justifie4when items are randomly sampled

from an infihite item pool (or-a finite pool with replacement), the exam-

inee's responses are in-dependent from:one another, and the probability of

a correct response i 0 for every randomly sampled item. In many instances
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A

items are not randomly sampled, and'even when they are it is customary

for every examinee to respond to the same n items. Thus, it is. not sur-

prising to find situations where (3) gives unsatisfactory results.

Opp trying to find a-probability function that gives a good fit to

data, probably three of the best kntwn and most frequently employed dis-.:
k

tributions are the binomial, Poisson and negative-binomial (Johnson and

Kotz, 1969). Thus, when the beta-binomial model is unsatisfactory, it, is

reasonable to consider replacing(3) With a Poisson or negative-binomial

distribution. Of course, the Poisson distribution is not new to psycho-

metric theory (Lord and Novick, 1968, chapter 21), and it frequently gives

good results when a particular ent occurs infrequently. The negative-

binomial distribution is' usually the first choice when the Poisson &is-

tribution is believed to be inadequate (Johnson and Kotz, 1969, p. 125).

The Gamma-Poisson Model

Let w=n-x and z=n-y be the 'number of incorrect responses given by

an examinee on the first and second test forms, respectively. We begin

by replacing (3) with the assumption that the probability function of w,

as well as z, is Poisson with parameter n, Symbolically

f(wrn) = ennw/w! Co'

The reason for working with w and z, rather than x and y is that the data

in our example is, skewed to the right. If the erve frequencies had

been skewed to the left, we would have, used x and y.

We also assume that for the population of examinees, n has a gamma

distribution. The motivation for this assumption is that it is typically 1,

made for the Poisson case, Z is mathematically. convenient, and it has
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given, good results with mental test data (Wilcn, 1981). If f(wrn) and

f(zIn) are assumed to be independent, results in Aitchison and Dunsmore

(1975) tell us immediately that

J(w) rr(aN6.),, 16 +1J tS +1J
(5)

i.e., the marginal probability function of w is negative binomial: The

parameters a and 0 can be estimated as follows: Let Tiftnd s
2

be the

Sample mean and variance of w for a random sample of examinees. Then
,---

i.--(s26))-1 and a.Tiia estimate 0 and a' respectively. "hiree other esti-

mates of a and 0 are also available (Johnson and Kotz, 1969).

Again referring to Aitchison and Dunsmore.(1975), we have that

(

f(ziw) -Tra+w)-(z+1) 20+1 20-1

r(tiv+z)

(6)

6

Since f(w,z)=f(w) f(zIw), we have an estimate of P once a and B are determined..

The Gamma Product-Ratio 'sson Model

The other mode we consider also assumes (4), but n is'assumed to have

a "gamma product-rati distribution (Sibuya, 1979). In this case

r(vii-di)r(0-1-y)r(w+0)r(a+y)

T(w+1)r(a),E(Or(y)r(03-1-7-1-W) ;
where

(7)

U are unknown parameters. We note that two' alternative names

for (7) are generalized Waring and negati e-binomial beta. Also, the

parameters a and 0 in (7) are different m those in (6).

1' 200
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To estimate

moments are

u
1
= as

112 a(a+1)(30344)/DY-1)(1-20'

p3 = a(a+1)(a+2)0(041)(0+2)/DY-1)(i-2)(Y-3)]

It follows that

-Pi
Pi

and

ir u1

a, 0 and y, we first note that the first three

/(Y-1)

+1

factorial

(8)

(9)

(10)

(11)

= (12)

11
11

1
1

3113

2a 20 = + 4y/

"2

Thus, if c..ti is the usual estimate of ui (i= 1,2,3), we have an estimate of.

y, say y. SubsiiluLing y aid u1 and u2 into equations (8) and (9) yields

a = Pi (y-1)0
-1

t

r--
P2

(y-2)-411(*i-1)-1 (14)

Substituting the right-hand side of (13) for a i
T.
n (14) yields a quadratic

equation for S. In terms. of the marginal density (7.1, either estimate of

0 can be used since the other estimate aft will correspond to 01, and-

since (7) is symmetric in a and 0. ar

Finally, to estimate P with equation (1), we note that

+w)r(a+z)r(B4-1-)r(ft+w42)r(?a+Y)

f(w'z) r(a)r(r(aa)r(w+l)r(z4-1)F(13)r(y)r(2a+0-1-ytz+w)

I °
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One way to establish this result is to assume f(wle) is negative-binomial

and that g(e) is beta (which is equivalent to assuming (7)) and,then perform

the integration in (2).

3. NUMERICAL ILLUSTRATIONS

This section uses real data to illustrate the practical advantages of

estimating P with the two alternative estimates described above.,
1,%

Fir.st 'We consider the data reported in Keats (1964). As previously

indicated, the beta-binomial model gives a poor fit to the observed test

scores, but, as noted in Wilcox (1981), the gamma-Poisson model gives a

reasonably good fit. .11.1e test had n=30 items, and Keats reports observed

test scores for 1000 examinees. If we estimate P with the beta-,plomial

model, the resUlts is .907 If we use the gamma-Poisson Model, the estimate

is .81. The third estimate of P does not apply since the estimate of

the parameters in (15) are inadmissible. Note that the reliability esti-

mates used by Subkoviak (1976) as well as Marshall and Haertel.(1975) also

assume the binomial error model holds. Since the beta-binoMial model gives

a poor fit to data, there 6 some doubt about whether these estimates should

even be'considered.

As another illustration, suppose.we have an n=15 item.test with a

passing score of x0=10. Further suppose we have test scores as reported

1
in Table 1. These results are based on real data reported in, Irwin (1968)

,

but they do not represent tests scores. The point.is that we might get

observed frequencies that are skewed, as are the frequencies in Table 1,

in which case it might be better, or even necessary to.replace the beta-

binomial model with something else.

2 U 2
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For the data in Table 1, 'the estimates of the parameters in the beta-

binomial model are negative, and so an estimate of P cannot be made. Sup-,

pose instead (7) holds. It follows that &= 5.2162, 13'=1.297 and 3,-1.'7961)

Thus, the estimate of.P is .197. If instead we use the gamma-Poisson model,

the estimate of P is .again .97.

CONCLUDING REMARKS .'

The main point in the paper 4is that the beta-binomial model might

give a substantially different estimate of reliability relative to some

otherf'model that gives a better fit to data. lite Illustrated' two' possible

solutions, but virtually any form for f(x.1 e) 'can be used to estimate 'P

Oa equation (2) as long as an estimate of gfe) can be obtained.
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ABSTRACT

When analyzing the distractors of multiple- choice' test items,

. it, is sometimes desired to determine which of the distractors has a small

probability of being chosen by a typical examinee. At present, this prob-,

lem is handled in an informal manner. In particular, using an arbitrary

number of examinees, the.probabilities associated with the diStractors

11
are estimated and then'sorted according toIkhethergipe estimated values

O...

are above or below a known constant pip. In this paper a more formal frame-
.

work for solving this problem is described. The first portion of the paper

considers the problem from the point of view of designing an experiment.

'The solution is based on 'a procedure similar to an indifference zone for-

mulation of a ranking arid _election problem. A later section considers

methods that might heempl* oyed in a retrospective study. Brief considera-
4

Mon .itolso given to how an analysis might proceed wheh,a test item has

been altered 'in some way.

.

KEY WORDS: indifference zone;edpirical Bayes;

4
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Consider a multiplejchoice test item havingWsalternatives from wych
. ,

to choose. One of these alternatives,is desibliated as being correct and the

\

../

,remaining k alternatives are referreck to r distractars. Henrysson (1971, pp.
..

.

136-137) suggests that 4 statistical anarsis of the distractors might be made

as follows: Administer the item to `random sample of n examinees; if the ob-
i

served frequency corresponding to, a particblar distractor is small, perhaps
4.

it should be replaced or rewritten.

Henrysson's procedure certainly seems'ilike a reasonable one and in fact

it is often used. A proposed' distractor might, appear to be satisfactory but

in reality it'might be infrequehtly chosen by examinees who do not know the

correct response. It is only. natural then to conduct an empirical investiga-

tion to determine when this' occurs. Insofar as we want to discover whether

an examinee knows the correct response, rewriting or replacing the distractor,
. -

might be in order when the data suggests that it is seldom chosen.` .The idea,

is to modify the distractor in the hope of lowering the probability of*guessing

the correct response. It should b'e stressed, however, that if any or all dis-

4
tractors are infrequently chOsen, this doei.not necessarily mean that the dis-

tractors should be replaced. .If, for example, all of the distractors are sel-

dom chosen, it may be that most examinees know the answer in which case the

item might be acceptable for certain types of achievement tests while for other

situations (e.g., Lord and Novick, 1968,p.320) the item might'be discarded

altogether. The statistical techniques described here are merely meant to

alert a test constructor to the possibili,t of improving the distractors;

Let pi (i=1,. ,k) be the probability that a randomly selected examinee
,

chooses the ith distractor. For convenience, the (k +1) -th alternative is

assumed to be the correct option. Thus, pol is the probability of a corrects

1

response by a randomly chosen-examinee: Co sistent with HenryssOn (1971)

suppose that for eaerkdistractor we w an to determine whether pi is less than

or greater than some known constant p0. If"pi<po, the value of pi is said to be
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wall and consideration is given to rewriting or replacing the distractor.` If

no_ ction is taken. A common value for p0 appears to be'.1 although

ether values are certainly possible.

let xi. be the number of examinees who choose'the ith distractor. Since

In estimates pi, a natural decision rule (and the one that is used) is to

d cidethe pi<po.if xi/n<po; if xi/n>po the reverse decision is made. A correct

d ision for all k distractors is made if simultaneously xi/n<po whenpi<po and

n>po when pi2p0 (i =1 ;..: ,k). The difficulty is that because of sampling fluc-

tions, we might observe an that results inanincorrect decision. For

ek.
ple, we might observe xi/n>po when id reality pi<po. Accordingly, when using

Hdnrysson's p;-ocedure, we need to consider the following types of questions. How

many examinees should we sample to to reasonably certainof making a correct de-

cision for all k distractors regardless of the actual values of the pi's? This

typetf question occurs when designing a study ofa proposed item, i.e., prior

to electing any data. In contrast, once'data is available, one might

. 4
11111 conduct a retrospective ltudy and consider, the probability of making a

correct sort of the distractors for the "typical" item under consideration.

Still apother type of problem that might be,considered is determining the

effect of rewriting or replacing a distractor. In the present context we

would want the new value of Oslo say pi, to be greater than p0. At a minimum,

we want pi to he at least as largp as pi. Thus, the question might arise as

to how certain we can be that p: is less than or greater thafi p. based on
, 1 r- 1

the number of examinees that are sampled. If pi<pi, the criginal version

of the distractor should be used; if pi>pi, the new version is described as

imprbving upon the old. The purpose of this paper is to provide an approach

to these problems.

From a statistical point of view this paper is concerned with comparing

11111, multinomial cell probabilities to a standarfl,and with comparing Binomial*

2
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distributions to a control. For related results on this type of problem the

reader is referred to Gibbons, Olkin and Sobel (1977,"Chapt6 10), Fhaner

(1974), Huang (19751, Tong (1969) and Wilcox (1979a, 1979b).

4

2. Mthematical Statement of the Problem

. For a random sample of.n examinees (sampled from an infinite population

or a finite population with replacement) let x= (x ..,x
10-1

) be the ob-

served frequencies among the WI alternatives. The random vector x has a

multinorPal distribution given by

Pf(x) = k11 p:Vx.!
i=1 1 1

I

where EX. 91.and .1)4 =1. Let p0 be a known constant. The first goal is to
'

V

determine for each pi(i=1,...,k) whether pi is above or below p0. As previously ,

indicated, the decision pi >p
0

is made if x/n.>p
0

otherwise the reverse is
i

-s'
said to be true. Let g, 0<g<k, be the number oft pi's suth that pi>po and

for convenience (and without loss of generality), suppose that the
Pi

's (i=1,...,k)

are ordered, i.e., pip As already noted, in tent of the xi's, a
.

correct decision (CD) s made if simultaneously

(2.1) -xi/n<po,

and

xin>p
i 0'

4

The problem is to find the smallest n, say n0, so that regardless of the actual

values'of the pi's, the probability of a correct de on aluereasonably,.

close to one. More briefly, we want to find the smallest n so th t

(2.3) 1)(CD)>P*,

4



where12-k<P*<1.

Following Gibbohs et al. (1977), an indifference zone formulation of

the problem is used: Thus, the investigator is assumed to have choseh a con-

stant 6* with the idea that if p0-e<pi<po+e, there is negligible loss in

misclassifying the ith distractor. In fact, if the value of pi is in the operk

interval (p0-(5 , p0+6*), any decision for that distrIctor is designated as

being correct and so a correct decision is made with probability one. Thus,

our only concern is with values of pi90-6* and pi4ped*.

tt

3. An Exact Solution

In this section an exact solution to the problem of determining n
0

is

described. First we observe that the'P(CD) is a function of the unknown pi's.

Thus, for agiven n, it might be that the P(CD)>P* for some values of the p.'s

but not for others. To be certain that (2.3) holds for any vector 2=(pi,...,p0.1)

we consider, as is typically done, the worst possible case, namely, the pi

0 0 0
values, say p =(pi,...,p01), that miniMizes the P(0). It is shown below

that 2.° does not depend on n. Hence, by choosipg the smallest n so that P(CDI

2 )>P
*

, (2.3) is guaranteed regardless of the actual values of the pfs.

To avoid certain tecaical difficulties, it is assumed that k(p0-o*)<1. This

is not a serious restriction for the problem at hand since typically p05.2,

.01<&*<el and k<4.

Our immediate goal is to show that 2 is given by 4=p0-6*,(i=1,...,k-g)

and piP=pee (i=k-g+1,...,k). First, however, some preliminary results are

needed. Accordingly, we begin by demonstrating that for fixed g and n,

(3.1) P(xi/n<po, i=1,...,k-g)

is minimized when pi=p2=...=plt_g=p0-6*. Since by assumption (k-g) (p0-6*)<15

the possibility of having 01=....pk_g=p0-6* is ensured.

4
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Let s be the smallest integer greater than or equal to np
0

apd

letj. = kig
g

'p.. Olkin and Sobel (1965) show that (3.1) is equalto
1 j=i+1 J

r(n+1)
1-51 1-t1-52 1-t1-...- (--- n-so k- gis-1 k-g

dt
tk_g...,

fp, In ....c, ' (1-to) 41 i ifi i
rk-g(s)r(n-s0+1) vl ,v2 vk-g

,k-g
where r is the usual gamma function, so=(k-g)s, t,=.1E

11

t. and t0, t1,
u =

...,t
k-g

are dummy variables. Note that this,quantity depends only

on (pi,...,pk..g). Examination of the limits of this (k-g)-fold integAl

reveals that among all'vectors (pi,...,pk_g) for which pi90-e, (3.1)

attains its minimum value when

(3,1) P1==..=Pk_g=P0-6*

as was to be shown.

Next consider

(3.3) P(xk.1.1.1 > npo,...,xk > npo).

From Olkin and Sobel (1965) we see that this probability is equal to

) - r(n+1) .Pk-g +1... /k )n-sg gn dt
rg(s)r(n-gs+1) 0 0 0 i=1 1 i=1 1

where now t,
u = 1.2

1 1

and again t0, ti,...,tg lre dummy variables. From
=

(3.4) it follows that for fixed g and n, among all possible values of

pi > p0 + e(i=k-g+1,...,k), expression (3.3) is minimized when

(3-5) Pk-g+1==Poe,

The above results are'now extended to show that for any n and any admissi-

ble g,

5
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P(CD) = P(x<s,...,xk.g<s,xk_g+1>s,...,xk>s)

is minimized when

(3.6) . pi=.:.=p4=p0er and pk.g+1=...=pk=pes*.

The vector P that satisfies the to conditions given by (3.6) is referred

'to as the least favorable configuration of the pi's.

First note that

(3.7) P(CD) = EEP(x
"'x

k-g
) P(x

'

x
k
Ix x

k
)_g

where the first summation is over all vectors (x ...,x
k-g

) such that

s (i=1,.,k-g) and the second is over all vectors (x x
k
)

such that x. > s (j=k-g+1,...,k). It can be verified using standard tech-

niques that

P(x

is a multjnomial distribution given by

(n-
%, p k-g+1 kpL, ln-x1-...-xk

xl- ;<k-g" kq1 k I

xk

pi.(n-x1-...-xk g). ...rk (1--..-Fk)

x !...x .-pk_g)k-g-1 k

n-x1-...-xk

where ri=pi/(1-p1-...-pk_g).

Thus, making the appropriate modification ip(3.4).or referring to Olkin

and Sobel (1965) the second summation in (3.7) can be written as

r(n-x - ..-x +1) r
1

r
k

n-x . .-x
k-g

-sg k
1 k-q -1

/0f0 (1-tO?A ti
r(s)rfn-x -x

k7g j=k-g+1 "

k

j=k+g+1
dt,

6



4,

5

where tr,=.

1jykE
t. and again to, tk+9+/..,tk are -dummy variables.

i-g4.

Examination of therlimits of this g -.fold integral reveals that for fixed

xl,...,xk_g, pi,...,pk-g, the second summation in (3.7) is minimized when
%

pk_g+1...pk=pee. This in turn implies thatjor fixed pi,...,pk_g the

P(CD) as given by (3.7) is minimized when-(3.5) holds.

Next, set pk_g+1...=pk=p0+6*. Since by assumption it is possible

Ohave p1 =...=pk_g=p0-s*, it follows, using an argument similar to the

one in the preceding paragraph, that the P(CD) is minimized when (3.6)

holds. Hence, by choosing n0 to be the smallest integer such that the

P(CD) > P* fo all admissible values of g under the least favorable con-

figuration (3.6 it guarantee (2.3) no matter what the values if the pits

happen to be.

Exact and Approximate Methods for Calculating no.

Tables 1-3 give the value of no for p0 =.1,
*=.05;

p0=.15,.2,

6*=.05, .1; ?*=.77, .9, .9,5, .99; and k=1(1).3. If, for example,
N

k=2, p0 =.1, 0=.05 and P*=.9, n=110-examinees guarantees that the correct

sort of the two distractors will be made with probability at least .9

regardless of the actual pi values. This section describes exact and

/)

approximate methods for determining n0.

A Lower Bound to n0

'There might be occasions where it is helpful to have a lower bound

to n
0

that is easily computed. Accordingly; let ak,p,s,nY represent

the value of (3.4) when pl,...ipk have a common value p. This is

also the P(CD) for the least favorable configuration when g=k. It can be

7



seer! that the smallest'n, say ni, such that I(k,p,s,n1)> P* is a lower bound

to no whenever p'>.lio (S*2 Sobel, Uppuluri and Frankowski (1977) have

1.
,tabled the values. of I(k,p,v,n) for p=t t=kt1(1)10, and v=1(1)10 which

can be used to determine a lower bound to n0 by referring to the entries

for the smallest p > p0 e and the largest v < s.' For example, if k=2,

p0 =.1, o*=.05, P*=.9, then the smallest p > po e = .15 in their Table

*B is p = 1/6. Examination of the entries in their table reveals that with

n=68 (which implies that s=7)I(2, 1/6, 7, 68) = .9008 and so'no > 68.

Thus, for this particular case, n0 can be determined exactly by starting

with n=68, evaluating the P(CD) for g=0,. 1, 2 and checking whether P(CD)>,

P* for all three values of g. If P(CD)<P* for any g,-the value of n is

increased by one and 'the process repeated until (2.3) is attained'for ally

three values of g.

Method of Calculating n0 for the Case k=1

We first discuss the determination of n
0

for the special case k=1.

This situation has already been considered by Thaner (1974) and Wilcox

(1979). In particular, n0 is the smallest integer n so that simultaneously

(3.8)
xE

n

s

n
(

x
)(P0+0)x (1-1)

=

and

* n-x
>1)

*

S-1 n
( Itn ...451t1X (1_peeryl-X>p*.

0x,.ro 4

f.

These two quantities are fairly inexpensive to evaluate on a computer,

evens for n > 500. They can also be calculated via the relationship

I(l,p,s,r)
xps(lx)pX(1.1))n.-X
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N..

`where I(l,p,s',n) is the usual incomplete-beta function. It has also been

shown that an apprcymate value of n0 is given by A
2

p0(1-P0)J( *)2. where A

is the.P* quantile bf the standard normal distribution.
411.

The Case k=2

For k=2 there are three valdes of g that need to be considered. For

g=2, the minimum P(CD) is given by(2,p,s,n) with p=p04.6*. From Sobel

et al. (1977, p.8)

I(2,p,s,n) -2 (n)pY .(1-2p)nY tYis (Y)]
y=2s Y z=s

(It might appear that the term ico(1-2p)11-1 should be either (2p)Y(1-2p)n-Y

or pY(1-p)n-Y, but from Sobel et. al it can be seen that this expression

is correct.) For g=0, they minimum P(CD) is given by

(3.9) J(k,p,s,n) = E (-1)(k)I(y,p,s,n)
y=0 Y

with p=p6-8* where I(0,p,s,0=1. In fact, from Sobel 'and Uppuluri (1974), it
-

follows that for g=0, the minimum P(CD,) is given by (3.9) for any k. For

g=1, the minimum P(CD) is

s-1 n *
x
1

n-x I
xE.0(xl) (pcs ) (i_pee) I I(1,(p0 W)/(1-p0+e),s,n-xi).
1

The last expression is obtained by writing the.P(CD) as is done in (3.7).
A

An Approximate Solution for k > 1.

For k > 2, the necessary calculations to compute n0 become prohibitively

expensive. In many cases, however, exact results are possible by first

applying the,approximate solution about to be described and then performing

the calculations outlined below.

The proposed approximate solution is based on the Bonferroni inequality

9

t
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which states that for any set Of events B1,...,Bm,

(3.10) P(71 Bi) > 1 -z P(5)

where B. is the complement of the event B1. Several others approximate

'solutions were investigated that relied on the central limit theorem

and various inequalities for the multivariate normal distribution.'HoWever,

the procedure proposed.here is relatively easy to use, it is inexpensive,

and it is surprisingly accurate.,
.0"-

'. Familiarity with the multinomial distribution suggests that when p0

is close to zero,'as is typically the case-'for the problem under investiga-

tion, the P(CD) is a minimum when g=k. 'Conditions under which this is true

are not known: In all cases considered, however, it was verifieq that this
/

is Indeed the Case. Fortunately it is possible to arrive at this conclu-
/- .

sion for the special cases considered here without calculating the exact

value of the P(CD) for every g. This point is illustrated below.

Let n
1
be the smallest integer such that (3.8) is greater than or

equal to T* where T*=1-(1-P*)/k. We consider n1 as a first approximation

to n0. As alluded to earlier, our main motivation for using n1 to approxi-

mate n0 is the high cost of determing no exactly for kt3. Before

considering this case,. it is of interest to examine the accuracy of the

approximation for k=2.

'Table 4 gives the value of n1 for k=2 and the values of P* and e

used in Table 2. As can be seen, n1 gives a good approximation to n0.

The Case k=3

The first step used to determine n
0 exactly for the *case k=3 was to

-compute n/ in the manner described in the previous section. The results

10
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are reported in Table 5. Next, using the value of n
1

the value of I(3,p
0

s,n
1
) was calculated. This was accomplished with the" reduction formula-

(3.11) I(k,p,s,n) =
n-s n ,

( )(1.3)" p" j P/(1.:0,$,Y)
- y=(k-1)s Y

..t

given by Sobel et al. (1977, p.8). The value of was then 'adjusted to

findthe smallest value of n1, say n2, so that I(k,pes*,s,n2r> P*. A com-

parison of Table 5 with Table 3 shows that frequently no= n2 and that typically

the value of n
1
is within one of the value n0.

Finally, to verify that n2 is sufficiently large to satisfy'(2.3),.

i.e., that n0 =n2, we calculated I(i'04-6*,s,n,) for i=1,2 andtgi,p0-e,s021,
L

for i=1,213. As previously pointed out gi,p0-s*,s,n2) is the probability

of correctly classifying the i distractors having probability p=po-s* of

being chosen by a randomly selected ami ee. These values were then used

in conjunction with the Bo?ferroni inequality,to show that P(CD) > P.

As an illustration,,consider the case k=3, p0 =.1, S*=.05 and P*=.95.

The value of n1 was found to be 199 and it was verified via (3.11) that
11,

n=199 is the smallest sample size so that P(CD)>P* when g=k call distrac-

tors have a probability of being chosen by a typical examine that is greater

than theistandard p0). Consider, for example, the case g=1. It was found

that I(1,p0 te,s,199)=.996,;and that J(2, p0-e,s,199)=.995. As explained

`earlier, the first quantity is the probability of making a correct decision

for a distractor havin p=p0+6* and the second quantity is the probability

of a correct decision for two distractors having p=p0-&*. Applying (3.10)

it follows that, the joint probapility of correctly classifying all three

distractors is greater than or equal to l-(1-.996)-(14:-.995)=.99l. Thus, the

11



the desired probability guarantee is satisfied for this special case. Pro-

ceeding in a similarpanner,,it can be seen that n=199 is sufficiently large

for g=2 as well.

. .

The Ca%e k=4

he last situation considered is k=4. In this case the value of n

,,, \....

0

was approximated in the manner prevusly described, but no attempt was made

.to make an exact evaluation of the P(CD) under the least favorable configura-

tion. However, checks were made on the adequacy of n
0

with a normal, approxi-

nation to I(k,p,s,n) given by

(3.12) Ak(p,h) =o (h)tp(2k )

A

2

)ok-2(h)+ i(2)b42(h)&2(h)-6(3)(1)3(h1

k-3 k
cp

4 k-4
o, (h)--6(4) (h)o (h)}.

where p=-s(n-s+1)
-1

and h=2 (arc ,sin p1/2 r arc sin Es/In+10)(n+2)2, o is the-

stAndard aormal cumulative distriubtion function and q is the standard normal

density function. This approximation was proposed by Sobel et al: (i9m, section!,

2.4) who claim that it generally gives better regulls than the normal approxi-

mationto the discrete mullinpmial

Table 6 gives the resulting values of n0 for k=4. Using (3.12) in

cpnjunction with'the Bonferroni inequality, an approximate lower bound to

the `CD) was also determined-for each ho. These values are reported

e 7.



4. A Lower Bound to the P(CD) for a TYPIcal Item.

4

In tMd section we describe how a retrospective study might"be conducted

to estimate a lower bound to the P(CD) for a typical item under study.

Before doing so, we note that once observationsare available it.is also

of interest to obtain a point estimate of the P(CD) for a typicpl item and

that under certain circumstances a theorettef solution tO this problem

exists. For example, we might assume that pl,...,porise from a Dirichlet

distribution the parameters of which can be estimated in the manner described

by Mosimann'fl962). However, there remains the practical difficulty of

evaluating the P(CD) once an expression for it has been obtained. For this

reason we do not discuss this problem further.

Although there are difficulties with obtaining a point estimate of

the P(CD) for a typical test item,'it is fairly easy to obtain a lower bound

to- this.quantity by proceeding in the manner about 6 be described. It

is assumed that observations are available on N items under investigation.

Consider the first distractorkof every item having probability p13 (j=1,...,N)

pf being chosen by a typical.examinee. Let hi(p) be the marginal distribution

of No No assumption is made about the.form.of h; it is merely assumed

that the first two moments of h exist. Assuming the conditional distribution

exiiislyinomialforagivenwe can estimate the mean 'and variance

of pl_j over the domain of items, say Wand a2, with

(Nn)-1 EX

and

A2 A .2a =u1.11

13
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where
2

il = ENn(n-1)] E(x..

'

(Lord and Novick, 1968, O. 521).'

Henceforth we, assume II and-02 are known. Let

and

where

C PO' if P < PO

p, if pc) < p <1

U
a
2

if 0 < 02 < m
2 2'

(p(1-p)-02)/(1-130)130, otherwise

m = max{p00-0, (p-P0)(1-0)

Let 01 be the probability of a false-negative decision for the first

distractor of a randomly chosen item, i.e., 01=P(xl<s,pi>p0).

Using results given by Skibinsky (1977), Wilcox (1979C) shows that

n x0, < U
.1s

E
1

( )Po (1-1)0)n-x.
' x=0 x

.., The details of the argument are given by Wilcox and so they need not be

repeated here. Let a1=1)(xisi, p190). it can also be shown that'

< r nl -x
"1 '1 x:s 'ix'

PL. 0

14



where U
1

is the value of U-wtth t replaced witr-

ti = v, if "u <-po

PO' if p0 < 11 I 1

Using the 4bove'procedure, we obtain an upper bound to-ai and oi,
1
say

ai and si, for i=1,...,k. From the BonTirroni inequality it follows that

P(CD)>1-1
1(&+i

)

It is also of interest to note that a lower bound to the P(CD) can be

determined fpr a given e>0. The interested' reader is referred to Wilcox (1979C). .

f-
5. Comparing Two Binomial Probability Functions

Atilbinted out in the'introduction to this paper, there may be situations

where an investigator is interested in ascertaining the,effect of a particular

modification to a multiple-choice test item under study. It was further sug-

gested that this problem might be formulated in terms of comparing a binomial

probability function to a control. That is, there are two binomial probability

functions having probability of success p'and p and the goal'is to determine

whether p' cp. A solution to this problem is given by Wilcox (1979b). Here

we extend this solution to cases where we*want to determine whether p' < p

c where c is a constant specified in advance by the investigator as being

appropriate for the situaiion at hand. In other words, we want to determine

whethdr the difference between p'and p is reasonably large.

15
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Let x and y be the observed number of successes corresponding to the

populations having probability of success p' atilt p, respectively. The deci-
,,

sion p'<p+c is made if n
-1

x<n
-1
ri.c; otherwise the reverse is said to be

true.

As before, an indifference zone formulation of the problem is used.

In this case the indifference zone consists of the open interval.(p+c-o ,

p+c-1.6*). If p+c-e<p'<p+cie the Investigator is rliot particuldIrly concerned

about which decision is made. If pr<p+c-e or if p' > p c 6* we want

the probability of a correct decision to be reasonably high

Since the family of binomial probability functions has the monotone

likelihood ratio property, it canbe seen that for fixed p, the minimum

P(0)-is

n y- 1 +[nc] n x
(5.1) z

0 X
z

0
(
x)(P+c-e) (1-P,c+e ny )-x (n)PY (1-P)n-Y

or

n n
(5.2) E

(n)(p+c+6,)x (n)ry nyE

y=0 x=y4[nc] x Y P)

whidhever is smaller, whore [nc] represents the largest integer less than

or equal to nc. Thus, to guarantee that both (6.1) and (6.2) have a value

exceeding P*,,jt is sufficient to minimize these quantities as a function

of p and see whether the desired condition holds for a given n. If, after

minimization, either (6.1) or (6.2) is less than P*, a larger value of n

must be used. Table 8 gives the smallest required sample sizes for P*=.75,

.9,'.95, .99; 6*=.1 and c=0, .05, .1, .15.

16
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Concluding Remaqs ,

The main result in this paper is that a researcher can solve the follow-

ing type of problem. Suppose we have a multiple choice test item with k=4

distractors. Further supose we want to determine which distractors have

a probability of less than .1 of being chosen by a typical examinee, and

simultaneously determine which have a probability of at least .1. A deci-

sion about each distractor is-ftiade based on a random sample of examinees.

If the proportion of examinees choosing a distractor is less than .1, we

decide the corresponding cell probability is less than .1; otherwise the

reverse decision is made. What is the minimum.number of examinees required

so that regardless of the actual cell probabilities, a correct sort of the

distractors is made with probability at least .975 when an indifference zone

of 6*=.05 is used? From Table 7, the answer is h=269. If instead there are

.k=2 distractors, Table 2 says that at least nt--235 examinees would be needed.

While the original motivatton for this paper was to analy'e distractors,

an additional application of the results reported here recently came to the

author's attention. Macready and Dayton (1977) illustrate how latent struc-

ture models might be used to measure achievement. For the simplest case,

we have two equivalent items for measuring a particular skill. Two items

are defined to be equivalent,if every examinee knows the answer to both or

neither one. Let 4 be-the proportion of examinees who have acquired the skill,

and let oi=P(correct on the ith item 1 examinee does not know), i=1,2. For

a randomly selected examinee., the probability of a correct on th rst item

and an incorrect on the second is

tPlo 01(1 -02)(1-0.

i7
SP
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and the probability of incorrect and then a torrecc-is

p01
(1-81)132(1-°'

If we assume 61=0241, then
131041,

and 13014. Since ploand p01 are cell

probabilities of a multinomial distribution, a partial check on the model

/ can be made by estimating p10 and p01 in the usual manner, and seeing

whether the values are both less than 14. Determining the number of exam-

inees required can be accomplished with the results given in this paper.

18
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TABLE 1

Values of n
0

for k=1

PO 6* P*: .75

.1 .05 18

.15 .05 25

.15 .10 5

.2 .05 33

.2 .10 9

, .9 .95 .975 , .99

60 110 160 239

86 153 219 313

- 20 40 59 86

109 180 260 370

25 45 70 100

so

4

I

1

.

-a

TABLE 2

Values of no for k=2

: .75 .90 .95 .975 .99

.10 .05 49 1)0 160 235 290

.15 .05 66 153 219 292 380

.15 .10 19 40 59 79 106

.20 .05 84 180 260 340 455

.20 .10 , 24 45 70 90 120

228
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TABLE 3

Values of n
0

for k=3

PO
P*: .75

.1 .05

.15 .05

.15 .10

.2 .05

.2 .10

70

100

26

120

30

.9 .95 .995 .99

140 199 250* 320*

192 259 333* 420*

52 72 92 119

225 305 390* 495*

60 80 105 135

' Entries marked with an * were not verified using exact
calculations of the P(CD).

TABLE 4

Value of n
1
for k=2

PO
P*: .75 .9 .95 .975 .99

.1 .05 49 110 160 235 60

.15 .05 66 153 219 292 380

.15 .10 19 40 59 79 106

.2- .05 89 180 260 345 460

.02 .10 4'1'24 45 70 90 120



TABLE 5

Values of n
1

for k=3

PO
6

*
. P*: .75 .9 .95 .975 .99

.1 .05 79 140 199 250 320

.15 .05 100 193 260 333 420

.15 .10 26 52 72 93 119

.2 .05 120 225 305 *** ***

.2 .10 30 60 80 105 135

TABLE 6

Approximate Values of no for k=4

PO
6 . .75 .9 .95 .975 .99

.1 .05 99 160 219 270 349

.15 .05 132 219 292 360 446

.15 .10
o

33 59 79 99 126

.20 .05 155 260 345 425 525

.20 .10 39 64 85 105 135

230
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TABLE 7 1

---VaT4es of n
o for k.4 Using (3.12)

Po
6* P*:

.1 .05

.15 .05

.15 .10

.20 .05

.75

99

132

33

155_,

.9 .95 .975 .99

160 219 269 348

219 292 359 453

AY 59 79 99 125

40 345 425 540

TABLE 8

Values of n for comparing a binomial
distribution to a control, 6*=.1

P*: .75 .9 .95 :99

0 32 91 144 245

.05 41 101 161 261

.10 41 101 151 261

.15 34 94 - 141 254
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ABSTRACT

SolAg.Measure ent Problems

A-1

Answer-until-correct (ADC) -tests have teen with us for some'ti

,Pressey (1950) points to their advantages in enhancing learning, an Brown

-- (1965) hai proposed a scoring procedure for it4t4at appears to increase.

reliability (Gilman and Ferry, 1972; Hanna,-1975),.This paper describeg,

a new scoring prpcedure for AUC tests that solves-varioys,measurement

problems. In particular, it makes it possible to check whether guessing

is at random, it gives a measure of how "far away" guessing is from being

random, it corrects observed test scores for partial information, and it

yields-a measure of how well an item reveals whether an examinee knows

or does n9t know the correceresPonse.. In addition, the paper derives

. -
the optimal linear estimate (under squared-error loss) of true score that

is corrected for partial intonation, and it derives another f44106.

score under the assumption the D1richlet- mult4nomial model hold. Once

r, certain parameters are estimated the latterfo la score makes it pos-

sible to correct forpartial information using only the examinees usual

number correct obtetved score. Ttle importance of this formula score
0

-discussed at the end of the-paper. Filially, various statistical techniques

are described that can be used to check the assumptions.underlying the,:

sproposed scoring procedure.
)

AO
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Solving Measurement Problems
)

A-2

INTRODUCTION

When an examinee responds to a multiple- choice test item, there is

the problem that an exami'ne's response might not reflecf his/her true

state. The most obvious example, and the one of central concern here, is

that an examinee g guess the correct response without knowing what

it really is. The common'solution to this problem is to assume guessing

is at random. That is, if there are t alternatives from which to choose,

and only one is correct, the probability of a correct response when the

examinee does not know is t
-1

. Simultaneously, however', it is recognized

that to assume random guessing is indefensible. One possibility is that

an examinee `might be able to eliminate one or, more distracprs without

knowing the correct response. In support of this possibility are empir-
.

ical investigations on tormula'scoring where it was found that the proba,

A\

-N

bility of guessing is substantially higlier than Woad be expected when .

random gllessing occurs (Bliss, 1980; Cross and Frary, 1977). We might

assume guessing is at random anyway,.but this ca a serious consequences
..,.

rl:rin terms of test accuracy (e.g', Weitzman, 1970; cox, 1980).

4,'
.

The purpose of this paper is to examine how an answer - until correct.
*N.

(AUC) testing procedure might be used to take into account the effects

of guessing. One advantage of the proposed scoring procedure is that its

efficacy can be empirically checked in several different ways. The model

contains number-rightiscom 6, as well es the assumption of random guessing,,

as a special case. Thus, when observed test scores suggest,that the model

holds, the apprgpriateness of the two more common scoring procedures can

be'check as is Illustrated in a later section of the paper. On a related

matter, the model can be used tp_teft whether items are "ideal" in the '

a).
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t
sense defined by Weitzman (1970). This just means that a random guessing

assumption can be tested. Using the entropy function, it is also possible

to measure how "close" the probability of guessing is to t-1. This is

important because when the probability is not.close to t-1, this suggests

it might be possible to improve the distractors which in turn will improye

test accuracy. The exact sense in which this is true is explained below...,

Another advantage of the model is thatityields a measure of test accuracy

that is not ordinarily avgnable. Two new formula scores are also derived,

the advantages and disadvantages of which are iscussed below.

It should be noted that a scoring rule or an AUC test has been pro- .

posed by Brown (1965). The scoring rule has been empirically investigated

by Gilman and Ferry (1972) and Hanna (1975) who found it to be more red

liable than number correct scoring. Moreover, an AUC test-Mg procedure

has been advocated from the standpoint of enhancing learning (Pressey,

1 1950). The goal in this paper is to propose a different scoring rule that

corrects for partial information.

ASSUMPTIONS

It is assumed that when an examinee responds to an achievement test

item, he/she can be described as either knowing Anot knowing the cor-
,

rept response. In the terminology of Reulecke (1977) this means that the

model'includes a binary structure variable, or following Harris and Pearlman

(1978) examinees are described in terms of a dichotomized latent trait.

One more possibility is to. say that an examinee either has or has not

acquired the "psychological structure" of a task (Spada, 1977). This

means that the model is deterministic in that:tense that if an examanee's

11111
I
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latent state is Mown, and if there are no errors at the item level, it

would be known whether an examinee would,produce a correct respOnse.

However, the model ipaildes what Reulecke.(1977) calls an intensity,variable.

In particular, it is assumed that an examinee who does not know might give

a correct response. The probability of this event is unknown, but it can

be estimated with the scoring formula andprobability model described

below.

Following Horst (1933), it is assum d that when an examinee does not

know, he /she can eliminate at most t-2 tractors from consideration.

Once these distractors are eliminated, the examinee chooses an answer at

An examinee who knows, always givesrandom from among those that re

the correct response.

Finally, an answer-until-correct scoring,prOtedure is assumed. This

means that an examinee respondsto a titem until the correct alterna-

tive is chosen.

THREE' TYPES OF GUESSING

Before turning to the neI results, it is important to be more precise

about what is meant by guessing Three types'can be described: The first

applies to a situation where randomly sampled examinees'respond to the
-

tame multiple-choice item. In this case we define guessing as the proba-
,

bility of a correct response given that the randomly sampled examinee does

not know. The secoul, or Type II guessing, is. defined in terms of a

single examinee responding to an item randomly sampled from some item domain.

The rate of guessing for -the examinee is the probability of a correct

response,to a randomly sampled item that he/she does not know. Finally,

236
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there is Type III guessing which is tI probability of a cor ct response

over independent repeated trials where a single examinee responds to a

specific item he/she does not know. Wilcox (1977a) examines tome late

structure models that are relevant to this case, but there are some p

tical difficulties (Wilcox, 1979) which limit their use. Only Type 1

and Type II guessing are considered.

A MODEL FOR AUC TESTS AND TYPE I GUESSING

Consider a randomly s4led examinee responding to a specific test

item using an AUC test. For convenience, particular attention is given

to the case where the. multiple- choice test item has t=4 alternatives from

which to choose, one of which is correct. The results are readily ex-

tended to any value of t. Based on the above assumptions, the examinee

be ngs to one of t=4 mutually exclusive groups. In particular, the exam-
.-

inee knows the correct response, or can eliminate 0, 1,pr 2 distractors.

Zeta 1.c. Le.t,4 be the proporiion of examinees who know, and let 4i be the propor-

tion of examinees who On eliminate i distractors. The probability of a

correct response the first time a randomly selected examinee chooses an

alternative is

Insert Equation 1 here

The probability of an incorrect on the first choice and a correct on the

second is

.7 Insert Equation 2 here

237
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The probability of two misses and then a correct is

Thsert Equation 3 here

. and the probability of three incorrects is

More generally,

Insert Equation 4 here

4

Insert Equation 5 here

kl

where i=2,..., t.

For,a random sample of N examinees let xi be the number who corre-

spond to the event associated with pi. For example, x1 is the number of

examinees who are correct on the first alternative chosen, and x2 is the

number of exkin ho are incorrect and then correct. The x.'s have

a multinomial probability function given by

where

Insert-Equation 6 here

Insert Equation 7 here

238 ,
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Since c=p1 -p2,

Insert Equation 8 here

is an unbiased estimate of ;. From Zehna (1966) it also follows that is

an unrestricted maximum likelihood estimator. Proceeding in a similar

manner also yields unbiased, unrestricted, maximum fikelihood estimates of

the ;.'s, namely,
1,

Insert Equation 9 here ,

Insert Equation 10 here

Insert Equation 11 here

Noee the model assumes that

Insert Equation 12 here

Maximum likelihood estimates of the g's are available under this restriction

of the pi's as noted by Barlow et al. (1972). For example, the maximum

likelihood estimate of ;, assuming equation 12 holdg, is given by

equation 8 when xi>x2, and it is c=0 otherwise.
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Using the Model to Analyze Achievement Test Items

Macready and Dayton (1977) describe a probability model based on

Type I guessing that might be used to analyze mastery tests consisting

of equivalent items. This section illustrates how the above model can

be used to analyze achievement-test items in a similar but different

Suppose, as is customary, it is decided that an examinee knows the

correct response if the first alternative chosen is the correct answer,

and that otherwise the examinee does not know. In this case a test

constructor would like to know the accuracy of the decision about a

typicaltexaminee based on his/her response.

The cells in Table 1 give the probability of the four possible

outcomes when an examinee responds to an item.

Insert Table 1 here

P

Thus for a randomly sampled examinee, the probability of a correct decision

about an examinee's latent state is the proportion of agreement in Table 1,

Insert Equation 13 here
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An unrestricted maximum likelihood estimate of P is just

Insert Equation 14 here

where 1, Zo, 1 and Z2-are given by equations 8-11. For any*t,

Insert Equation X15 here.

P can lso be estimated assuming equation 12 holds, as is illustrated

below. In many instances this will yield the same estimate of P as is

given by equation 14, but this is not always the case".

Using equation 13,it would seem that for any fixed ,-the accuracy

of an item is maximized when guessing is at random, i.e., when :=2.0

and co=1-. This can be established in a more formal manner as follows:

The inequality

Insert Equation 16 here

holds whenever xi<x2<... <xN if and only if

Insert Equation 17 hereNi,..\

and Ec.=zb. (e.g.., Marshall and Olkin, 1979', p. 445). It follows that

P is maximized when ci=g2=0 since equation 17 holds when c.(c, ci, c2)

and b=(,' 1 -t, 0, 0).

Another way to characterize Table 1 is to use the "del" measure

developed 4 Hildebrand et'al. (1977) which, for the situation at hand,
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is equivalent to Cohen's kappa.(Cohen, 1960. In terms of the 4's, this

measure of association is

where

A

Insert Equation 18 here

Insert Equation 19 here

<appa, l.c. Following Hildebrand et al., K can be interpreted as follows: Suppose it

is desired to measure the extent to which an examinee's latent state can

be "predicted" according to the decision rule being used. The off-diagonal

cells in Table 1 represent the error rates. The! index K represents the

1111/

4

proportional reduction in the number of cases in the pair of error cells

when a shift is made from statistical independence with t{e population

marginals to the actual probability structure.

Note that Equation 18 is the value of K assuming the model holds.

A Measure of Item "Idealness"

Weitzman (1970) describes'an asymptotic test of whether an itervis

ideal. As previously indicated, an item is defined to be ideal if guessing

is at random. In the above notation, this corresponds to having 41=42=0

which implies Oat p2=p3=p4. A practical problem is that the null hypo-

thesis that p2=p3=p4 might be tested and rejected, when in fact p2, p3

and p4 are nearly the in value. This in turn might lead to efforts

in improving the distra ors when the item is already close to being ideal.

2 2
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The simplest approqch to this problem is to estimate si and 42 and

see how close they are to zero. If they are not, simply examine the dis-

tractors and decide whether any of them can be improved. Some additional

possibilities are described and illustrated belbw.

When trying to determine whether 41 and 42 are both close to zero,

it might be desirab1 to take into account their combined effect on how

close the item is to being ideal. Looking.at 41 and 42 separately, they

might appear to be close to zero, but together, perhaps the item could

be improved by a substantial amount. The problem becomes more complex

when more than three distractors are used. Thus, it would be convenient

to have some measure of how well an item approximates the ideal situation

where 40=1-4.

One approach is to estimate 4 which yields an estimate of the pro-

portion of agreement in Table 1 for the case 40=1-4. Thus, we have

estimated the maximum possible value of P for fixed 4, say Pmax, which

corresponds to the estgiated value of For t=4,
Pmax= 44.

. Next,

estimate P which yields an estimate of

Insert Equation 20 here

This gives a measure of how ideal the item really is. When the model

Delta,' cap holds, A>0, and the closer A is to zero, the better the item.

Employing the A measure seems to be intuitively appealing, and in

ti
some situations it might suffice.. However, there are at least two ob-

jections to its use. First, it has been suggested (e.g., Marshall and
fi
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Olkin, 1979, p. 408) that me4sures of inequality should have certain proper-

ties, namely, they shogld be Schur-convex, or strictly Schur-convex. Here

the goal is to measure the inequality gf p2, p3, p4. (The meaning of a

SChur-convex function is not given since it does not play a direct role in

the results to follow. The interested rea s referred to Marshall

and Olkin, Chapter 3.) This requirement was first formulated by Daltori

(1920), and steps,in this direction were taken by Lorenz (1905) and Pigou

(1912). Thus, as a measure of the inequality of p2, p3 and p4,A might

be objectionable because it is not Schur-Convex. To see this, it is

sufficient to observe that A, as a function of p2, p3 and p4, is not

symmetric. The second objection is that even when the model holds, the

estimate of ;1 and'42 can be negative, and the estimate of can be

greater than one, In this case A cannot be interpreted as, a difference

of two probabilities. Perhaps we could use A anyway, but an investiga-

tor might prefer to use a more traditional index of inequality.

For the problem at hand, the index of inequality that suggests

itself is the entropy function. The entropy of a probability mass func-

tion peo, k=1, r, is.

Insert Equation 21 here

where Epk=1. (In some instances, the logarithms in equation 21 are taken

to the base 10 or the base 2. See Kullback, 1959, p. 7.) The function H

provides a measure of the degree of uniformness of a distribution. That

is, the larger is H, the more uniform is the distribution. The minimum

value of H occurs when 01=1, its maximum value occurs when pr...pr=1/r,

and it is Schur-concave (implying that -H is Schur-convex). See Marshal
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and kin (1979, chapter 13, section E). To measure the idealness of

item, the inequality of p2, p3 and p4 needs to be measured which

//suggests that H(qi, q2, q3)4be used where qi=pi+1/(1-p1), i=1,2,3. In

this case the maximum possible value of H.occurs when qi=(t-1)-1-:

An additional reason for using the entropy, function is given in the next

. .

section of the paper. Brown (1965, section 3) also used the entropy

function but in a slightly different fashion.

Empirical Checks on the Model

From equations 1-4 various,restrictions on the pi's are evident in

order for the model to held, For instance, it requireS having p1 >P2LP3>P4.

.

This assumption can be tested using results reported by Robertson (1978).

It should be noted that when 01=p2, the probability of having xi>x2

approaches .5 as N, the number of-examinees, gets large. Thus, there is

a reasonably high probability that the usual estimate of the pi's will

indicate that the4model does not hold when the pits are approxi7nately

equal in value. Of course, the hypothesis p2=p3=p4 can be tested, but

this does not give a direct measure of how ideal an item is. The null,

hypothesis might be rejected, for example, but this does not directly in-

dicate the extent to which p2, p3 and p4 are unequal. Another approach might

be to estimate H, especially when the data suggests the model might not

hold, and if H is reasonably close to its maximum value, decide that the,

item is ideal. We are not suggesting that hypothesis testing be discarded

all together, the point is that the entropy function gives us some addi-

tional information about how close an item is to being ideal that is

otherwise unavailable. It might help to note that a similar situation

occurs in the analysis of variance (Hays, 1973, pp. 484-488).

,/
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Another requirement of the model is that p44, otherwise, 0>1.

For similar reasons the model requires that p3-p4 < 1/3 and p2-p3 < k.*

IP
However, p1>p2>R3>p4 implies that these additional inequalities are true.

Illustrations

The results. given above are illustrated with test scores for students

enrolled in an undergraduate psychology course at the University of Southern

California. Each item had t =5 distractors. There were four test forms,

and each form had fortytems'. For simplicity, on1414 items a e analyzed,

and only one test form is ed. Amore extensive 'analysis of he.data,

together with some new theoretical results, will appear in a forthcoming

report.

Table 2 gives the observed frequencies of the number of examinees

who gat the item correct on the ith attemptV(i =1,...,5). For example,

there were 42 examinees who were incorrect on their first attempt, but

were correct on their second attempt of item 2.

Insert Table 2 here
a

The first step when app ng the results giVen above is to test the

hypothesis that equation.12 holds. As'Keviously mentioned, fgis is accom-.'

plished with results in*Robertson (1978). This was done for all 40 items

on the test using a .01 level' of significanc . For items 1 and 2 in

Table 2, applying Robertson's test is not necessary since the estimate of

tpep.'s already satisfies equation 12. Item 3 is highly nonsignificant,

'but the null hypothesis is rejected for item 4.

I 1

For 21 of the.40 items, Robertson's test was unnecessary since the
, -

stimate of the pi's sa/t:isfied equation 12. For the remaining items,

2 4f
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the null hypothesis was rejected only once; this was,for item 4 in 4
.

Table 2.,
111011-

,Next suppose a test constructor wants to dete ,wh_ether con-

`ventional scoring procedure will yield reasonably accurate decisions about

I

whether an examinee haS acquired the skills represented by items 1, 27

and 3 in Table 2. An estimate of r via equation 15-yields a partial

solution to this problem. items 1 and 2, the estimate Og is

(139-14)/168=.744 and (100-42)/168=.345, respectively. Thus, the corre-

sponding estimates of P are .917 and .75:

As f item 3, estimating p3 and p4 under the assumption that

equation )2 holds requires an application of the pool-adjacent-violators

al gor4Verl? in Barlow et al. -0972, pp. 13118),e, The result is.

P3447(294.10/(2(168))=.134. The estimate of is .202, and so the esti-
,

mate of Pis .797. Note that using tile. pool-adjacent violators algorithm

Pdids the satte estimate of P as is obtained whe ,equation 15 is used

o

r and when:pi is estimated with xi/n. However, When x1 <x2, using 5i=xi/N

will yield different results. The reason is that the 'gaximum likelihood .

,

of 4, assuming equation 12, is =0 when x1 <x2, and it is (x1 -x)/N'
4

4
4

otherwise. .Consider, for-exampla,-.item 4 in Table 2. =0, and-the

maximum likelihood estimate of p2,'aSsuming equation 12, is .369. Thus,

the estimate of P is .63. If, however, we use 15--,x-/N, the, estimate of
.

P is .446.

Suppose the first three -items in Table 2 Constituted the whole test.

Gamma, 1.c. ,Another important poll, is tbat)he estimates-of P yield an estimate of Y

the expected number of correct decisions for the n items on the test. r

The estimte iS simply the sum of the estimated P values. For the case

at hand y is estimated to be 2.46, Thus, when a conventional scoring
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procedure iS used to determine whether an examinee knows the correct

response to an item, the expected number of correct decisions for the

first three items in Table 2 is istimat<to be 2.46.

0
If any of the P values ioks small; one possible way to improve the

item is to improve the distractors," For example, efforts might be made

to improve the least frequently chosen distractor.

To measure the effectiveness of the distractors, the-entropy function

is applied. For item 1 in Table 2, q1=.483, q2=.31, q3=.138 and q4=.069.

Substituting these values into equation 21 yields H=1.172. The maximum

possible value of H occurs when qi=.25 (i=1,2,3,4) in which case H=1r386.

For item 2, H=.99 and for item 3 H=1.347. Thus, the.test scores indicate'

that the item with the most effective distractors is item '3 followed by

item d. The distractors for item 2 are the least effective having achieved

71.4% of the maximum possible entropy.

It should be pointed out that the above estimate of H for item 3-

was not made under the assumption that equation 12-holds. If equation

92 is assumed, and the pool-adjacent-violators algorithm is applied,
4

lorthis yields 517.405, P2=51=f)4 =.1568 and Pt=.125'in which case H=1.382:"

" In either case, item 3 has the most effective distractors.

A MODEL FOR TYPE TIGUESSING

In- `many instances a test consists of items representing skills that

are thought tWbe most important. Moreover, there are situations where

the skills on a test are the only ones that are of interest to the test

constructor. However, in other situations (see, e.g., Hambleton et al.,

197'8) the items on a test are intended to be a representative sample of
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some larger item domain. The goal is to use test results to make infer-

ences about what an examinee knows relative to the item pool. In either

case, the results in he previous section are of,interest. This section

considers how an AUC test might be used to.solve certain measurement

problems ,when generalizing results fora single examinee to an item domain.

For a specific examinee, let g be the proportion of skills among a

domain of skills that he/she has acquired. Further suppose that each skill

is representeufby a multiple-choice test item having t alternatives from

which to choose. Again for convenience, emphasis is given to the special

case t=4. Let gi (i=0, , t-2) be the roportion of items for which

the examinee does not know and can eliminate i distractors. Once i dis-

tractors ar9415.17131"&c,the examinee is assumed to guess at random-from

amorjgthosethatmlain.Let ri be the probability of a correct on the

ith attempts Ther'for t=4,

Insert Equation 22 here

Insert Equation 23 litre

Insert Equation 24 here

Insert Equation 25 here

A
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If for a,.random sample of-n items, yi is the number of items the examinee

is correct on the ith alternative chosen.,An'unbiased estimate of the

gi's caribe derived just as unbiased estimates ti's were- derived in

the previous model. In particular, an unbiasej estimate of is

Insert Equation 26 here

Equation 26 is an estimate of true score that is corrected for an

examinee's partial information. Note that equation 26 contains the usual

correction for guessing formula'score as a spbcial.case.'

The Optimal Linear Estimator of

Let z be a random variable that is an unbiased estimate of the unknown

ill1.c. parameter e. Under squared error loss, Griffin and Krutchkoff (1971) show

that the optimal linear estimator of e is

I

Insert Equation 27 here

Alpha, l.c.

Delta, 1.c. where a=Var(e)/Var(z) and 6=(1-a)E(e). In mental test theory, equation

27 is kno Kelley's 'Thee gressionestimate of true score (Kelley,,

1947, p. 409). The point made by Griffin and Krutchkoff is that if an

unbiased estimate of an examinee'strue score is used, equation27 is

optimal regardless of the shape of true score distribution. Wilcqx (1978

compares equation 27 to several other estimators assuming the binomial

error model holds but where observed scores are generated according to a

two-term approximation to the compound binomial error model. The results

suggest that when simultaneously estimating the true score of several



examinees, the Griffin-Krutchkoff estimator should be used when an ensemble

squared error 'loss function is Ding used.' Furthermore, the results sug-

./--
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gest that Kelley's,linear regression estimate of E 1)e employed:

It is assumed that the yi's have a multinomial distribution and that

observed test scores for N examinees are available. An estimate of E(E),

Var(E) and Var(yl-y2)dis needed to apply results in Griffin and KrutchkOff

where the expectations defining these quantities are -over the population

of examinees.

Let

where i=1, 2. Tien

Insert Equation 28 here

Insert Equation 29 here

Insert Equation °3O here

Insert Equation 31 here

Since -cov(yi, y21pi, p2) = :-2npip2, it follows that

Insert Equation 32 here
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Thus,

and

Insert Equation 33 here

Insert Equation 34 here

Letting yij and vij be the value of yi and vi, respectively, for the jth

randomly sampled examinee, the above results suggest that E(g) be esti-

mated with

4-4

and E(g2) with

Insert Equation 35 here

Insert Equation 36 here

Thus, an estimate of Var(glis

Insert Equation 37 here I

The variance' of the marginal distribution of observed scores.(yrydin

can be estimated in the usual manner, and so an estimate of the optimal

linear' estimator of g is obtained by substituting the results in equation

27. Of course, the results just given contain, as a'special case, the

optimal linear estimator under the assumption guessing is at random.

252



Solving Measurement Problems

A-21

111,
Aumerical'Illustration

As a simple illustration, suppose we have five examinees with obServed

y values as shown in the first two rows of Table 3, where the test length

is n=10.

Insert Table 3 here

Mu; Tau,
Then = 42 = a7d so a =.0236. The estimate of var(Cyl-y2)A)Sigma, 1.t. , c $ c

is .0687. Therefore, the estimate of a is &=.3435, and so the estiamte

of the optimal linear estimator is

a- \

Insert Equation 38 here4

ti

The value of E for the five examinees are given in the last row of Table 2.

Before continuing, some additional comments about the above results

are in order. First, the estimate of var(E) can be negative in which case

i4=I is used. The same phenomenon occurs in the case considered by Griffin
. .

and Krutchkoff. Second, the optimal linear estimator of E derived above

does not assume Alimodel holds; It is the optimal linear estimator

of pl-p2, but no insistence is made that p1 p2. If the model holds,

implying that p12p2, equation 33 is no longer true, and so the condition

of having an unbiased estimate of E, as is assumed by Griffin and Krutchkoff,
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is no longer satisfied. Fbr furthe'r comments on this approach to estimation,

see Griffin and Krutchkoff (1971) and Wilcox (1978).

A Strong True Score Model

This section assumes that for any examinee, yl'and y2 have .a.multi-

nomi al probability function given by

.

Insert Equation 39 here

where, as before, t---p1 -p2 and Og<1 is assumed. Equation 39 can be justi-

fied under an item sampling model, or it might give a good approximation

to the joint probability function of y1 and y2. It should be nbtea that

equation 9 implies that y1 has a binomial probability function, and

so when every examinee takes the same n items, the items have the same

level of difficulty (Lord and Novick, 1968, chapter 23). On theoretical

grounds, this implication of equation 34 is unjustifiable. However, for

certain measurement problems, it appears that this might not be a serious

restriction. (Wilcox, 1977, 1978; Algina and Noe, 1978). See also

Subkoviak (1978).

Strong true-score models attempt to extend assumptions such as equa-

tion 39 to a population of examinees. The basic problem here is to find

a family of distributions that approximatesg(02), the joint density of

and p2. Once this is done, various measurement problems can be solved

(e.g., Lord, 1965; Huynh, 1976; Wilcox, 1977).
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Past experience with this type of problem (Keats and Lord, 1962;

Lord, 1965; Wilcox, 1979) suggests approximating g(c,p2) with a bivariate

Dirichlet function given by

Insert Equation 40 here

Gamma, cap where r is the usual gamma function, vi>0 (i=1,2,3) are unknown parameters

and 0<p2<1. (Marshall and Olkin, 1979, pp. 306-307 describe two other

distributions to Which. the name "Dirichlet" is attached. Here, only

equation 40 is considered.)

To estimate the vi, proceed as follows: first, observe that the

. marginal distribution of is beta with parameters v1 and v2 +v3 (e.g.,

Wilks, 1962). It follows that

Insert Equation 41 here

where, as before, pc is the mean of over the population --of examinees.

For similar reasons,

Insert Equation 42 here

where pp is the mean of p2. It is also known .(e.g., Wilcox, 1977) that

where

Insert Equation 43 here

Insert Equation 44-here
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Summarizing these resulte in matrix notation yields

Insert Equation 45 here .ic

A-24

AS previously indicated, lit and q can be estimated, ,hick yields an

estimate of s. An estimate of p2 is N
-1

Ey2i, an so equation 44 yields

'an estimate of the v.'s.

Mosimann (1962X applies the Dirichlet-multinomial model to two real

data sets, he discusses how to check the implications of the model, and

he gives several other results that hang practical value, and so these

fisxes are not discussed further. Since the Dirichlet-multinomial model

is the multivariate analog of the beta- binomial model, additional insights

into the appropriateness of the model are available from Wilcox (1981).

The point is that the Dirichlet-multinomial model can be applied to AUC

scoring procedures and so solve various measurement problems as previously

indicated. An advantage of the model is that it allows guessing to vary

er the population of examinees.

An important point is that if the model is assumed to hold, and in

particular 0<t<1, this suggests estimating t to be zero even when t<0.

In this case the'estimates of E(t) and E(t2) are not justified for the

reasons given above, but they are still appropriate for the reasons given

by Wilcox (1979).
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One point that deserves special mention is that a new formula score .

can be derived that corrects for partial information. The derivation is

essentially the same as the derivation,of equation 4 in Wilcox (1979).

Thus, we merely note that

Insert Equation 46 'here

1.thereBistheusualbetafunction.Thus,oncethev.'s are estimated,

we only need y1 to estimate

DISCUSSION

One objection to the assumptions that were made is that the re-

suiting model is too simple. For instance, it does not allow for the

possibility of knowing and being incqrrect, or the possibility of haying

misinformation. Brown and Burton (1979) describe a real situation where

the latter problem occurs. Frary (1980) gives an interesting account of

how misinformation can affect various scoring procedures, and Wilcox

(1980) indicates the seriousness of theformer problem when determining

the length of a critenion-referenced test. Although the present model

does not correct these problem's, empirical checks on the appropriateness

of the model can be made. It should be mentioned that models have been

proposed for handling the two errors just described (e.g., Duncan, 1974;

Macready and Dayton, .1977; Dayton and Macready, 1976). However, these

models require additional assumptions that might not be met. The Macready-

Dayton model, for example, assumes that equivalent items are available
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for measuring a particular skill. The assumption of equivalent items can

be checked using a goodness of fit test (Macready and Dayton, 1977), using

a procedure described by Hartke (1978), and results reported by Baker

and yubert (1977) might also be useful in.this endea'vor., (See, also,

Wilcox, in press, a.) Here it is assumed that empirical investigations

fail to support the existence of equivalent items, or that it is decided

a, priori that equivalent items do not exist. Finally, the Duncan model

corrects for misinformation, but it assumes guessing is at random. The

goal here is to avoid this restriction, or to find ways in which it can

be empirically checked.

Anotherpossibleobjedtion to the model is that it characterizes

examinees as belonging to one of two mutually exclusive classes,' namely,

"knowing" -and "not knowing." The relative merits of this approach are

discussed in a, more general context by Reulecke (1977), Hilke et al.

(1977), Scandura (1971, 1973), and Spada (1976).

In some situations, the scoring procedure for Type II guessing might

be objectionable because it penalizes an cominee for having partial infor-

mation. That is, if an examinee wants to maximize his'/her score (the

estimate of the strategy would be to minimize y2. This could be done

by choosing an answer, and tf it is wrong, deliberately choosing another

response that is believedsto be incorrect. In this case the examinee is

not behaving in the manner assumed, and so the model4is inappropriate.

One approach to this problem is to have an examinee always mark his/her

first and second choice without revealing which response is Correct.

Letting yl be the number of times the examinee's first choice is correct,

letting'y2 be the number of times the second choice is correct, t is'again

estimated with (yry2)/n. Indeed, all of the previous results still
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hold. However, this might not eliminate the problem under discussion.

Suppose, for example, that an examinee can eliminate all but two of the

alternatives from consideration for every item on the test. If an exam-
, 'A

inee's two choices correspond to these two alternatives, the expected

estimate of is O. However,if an examinee's first choice is between

the two alternatives that contains the correct response, and if the exam-

inee is deliberately incorrect on the second choice, the expected

estimate of is .5. One way to minimize this problem is to subject the

items to an analysis that attempts to ensure guessing is at random. It

was already indicated how this might be done. Another solution.is to

apply the Dirichlet-multinomial model. If estimates of the vi's can be

Made available, the information on the examinee's first choice, the value

of yl, is all that is needed in order to estimate Several other stro

ture-score models are currently being investigated that might be useful

when addressing this proble . Another possibility is'to check the assump-

tions of the model; if they do not hold, simply score the test using

traditional techniques.

For practical purposess perhaps the problem just described will be

inconsequential; this remains to be seen; Also note that this problem

is irrelevant in terms of the results given bnder Type I guessing.

In practice, the scoring rule proposed by Brown.(1965) results in

scoring t-i points when the correct response is chosen on the ith attempt

of an item, where, as before, t is the number of alternatives from which

to choose (e.g., Frary, 1980). Thus, the sooner an examinee identifies

the right answer, the higher will be his/her score. In some cases, however,

this scoring procedure-is also inadequate. First, it gives credit to an

examinee when a test constructor unintentionally prOduces-ineffective
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.distractors. Second, and perhaps most importantly, it gives a measure of

partial information,, but it does not tell us whet an examinee knows in

the sense of estimating The same is true-Of the other,scoring-propedures

cited by Erary (1980), the scoring rule proposed by Coombstet al. (1956),

as well as the subset selection rule proposed by Gibbons, Olkin and SobeM

(1977, 1979). No claim is, made thAt these procedures be abandoned, but as

."argued by Morrison and Brockway (1979), estimating can be important.

Another point is, that' only two Nsponses to each item are needed in

order'to estimate or each examinee. The additional responses are

needed only for checking the appropriateness of e model, and in par-

ticular, justifying (y).-y2)/n as an estimate of In some cases n will

be too small to accurately test the model. D rmining whether this is

the case can be accomplished with the statistical-techniques described

under Type I guessing.

Finally, it was suggested that the Dirichlet-multinomial distribu-

tion be considered when trying to find a strong true-score model that
4

fits the data. It sho,yld be stressed, however, that considerably more

experience with this distribution is needed before it is routinely applied.

Wilcox (in press, b) got good results.with the distributiofi using real

data, but the extent to which it gives a good fit to mental test data is if
.,

not kaown. An e irical investigation is currently liderway in an attempt.

to partially resolve this problem. Consideration will also be given to

several Other strong .true- `score models. The results should be available

in the near future.
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P1 C + C0/4 + C1/3 + 42/2

P2 C0/4 + C1/3 + 42/2

P3 C0/4 + C1/3

P
4

=
0
/4

t-i

P. = E 4j/(t -j),1
j=0
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-

r2 = go/4 + g1/3 + g2/2 [23]

r3 = g0 /4 + El/3 [24]

r4 = g0 /4 [25]

(y1 -y2) /n [26]

= aZ [27]

Vi = yi/n [28]

lyi yi-

wi n1 n-1
[29]

E(vi(pi, p2) = pi [30]

E(wilpi, p2) = pf [31]

E(3y21P1, P2) = n(n-2)PiP2 [32]'

E343]

[ 34]

E(V 1-112) = E(c)

)

E(wi+w2-E2y1y2/(n(n-2))1 )
2

)
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-1 -1= N wii+w2j-n - 1(n-2) 2.Y1,92j
=

(32= ; -

= .3435(y1-ydin + .276

f(Y1, v2 R, p2)

n!( ..-1-p)Y1 pZ2 (1..g...p2)11,Y1 -Y2

Y113121(n-Y1-Y2)!

r ( Vl+V2+V3)
rV1 13%442 iv3

r(v1)r(v2)r(v3) c
2

I/ } +v2 +v3 = 0

v
1
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(1-11
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1) v3 = 0

s= v2 + 1/3

s = v (1- 2 -2
ag 4-11,t
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TABLE 1

Four Possible Outcomes When an Examinee Attempts an Item

Latent State Knows

Knows

,Doesn't Know

Decision

Doesn't Know'
Marginal

Probabilities

....

4

40/4 + 41/3 + 42/2 380/4 + 241/3 + 42/2 go +
C1

+
C2

272
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TABLE 2
A

Number of Examinees who are Correct on the

ith Attemp.of the item

Item 1 2

Attempt

53 4

7 1 139 '14 9 4 2

2 100 42 17 6 3

3 68 34 16 29 21

4 31 93 20 15 9.

73
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TABU 3

Values of yl, y2 and 1 with n=10 andll=5

yl
5 7 6

Y2 3 1 2

I .34 .48 .41

9 2

0 2

.6 .28

IP*
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ABSTRACT

Under an answer-until-correct scoring procedure, the entropy function

can be used to measure the effectiveness of the distractors of a multiple-

choice.test item, This brief note indicates how a polarization test can

be used to determine whether the entropy isIarge or small. Included as

a special case is an exact test or whether guessing is at random.

I

1
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2

1. INTRODUCTION

1

Consider a specific multiple-choice test item having k alternatives

from which to choose, only one of which is the correct response. Suppose

that a randomly sampled examinee responds to the item according to an

answer-until-correct scoring procedure. This means that the examinee

chooses alternatives until the correct response is identified. This is

usually accomplished by having the examinee erase a shield on an answer

sheet`. The examinee knows immediately whether the correct response was

chosen. If it was not, another shield is erased, and this continues

until the correct response is identified. Wilcox (1981a) describes sev-

eral measurement problems that this scoring procedure can solve. They

include correcting for'guessing without assuming guessing is at random,

testing whether guessing is at random, measuring the effectiveness of

distractors, and estimating the probability of correctly determining

whether an examinee knows the correct response when a onventional scor-

ing procedure is u5ect. This last probability makes possible to charac-

terize n-item tests, and a relevan1statistical procedure has been devel-

oped (Wilcox, in press). More recen y the results in Wilcox (1981a)
5)

were extended to a strong true score odel that allows guessing to vary

over the population of examinees but which does not assume true score

%Ikw,

and,guessing are independent (Wilcox, 1981b).

Suppose an answernkatil-correct scoring procedure is used,, and let

'qi be the probabiW that a randomly selected examinee chooses e 1Correct

response on the jth attempt of the item. Wilcox (1981a) makes certain

,
assumptions about how examinees behave when attempting a mulltiple-choice

item which'imply that

?79



ql q2 qk

3

. This assumption was empirically checked with 620 examinees who took three

tests during a semester for a Val of 117 items. At the .01 level of

significance, it was found that all but 6 of the items satisfied this re-

striction (Wilcox, 1981b).

In Wilcox (1981a), it was proposed that the effectiveness of the

distractors be measured with

k-1
H(q1,...,qk) = E p.ln p. (2)

i=1 1 1

where:pi=qi+1/(1-(11). This is the entropy function which is also known as

. Shannon's measure of information or divrsity. Wilcox (1 81a) notes that

if it is decided that an examinee knows the correct response if and only

if the correct response is chosen on the first attempt of the item (i.e.,

a conventional scoring procedure is used) the distractors are the most

effective when q2=C13=...=qk. This cori4ponds to random guessing, and

Weitzman (1970) calls such items "ideal." The entropy fuhction measures

how far away an item is from being ideal. Small values of H indicate that

guessing is not close to being random, while large values of H mean the

item is close to being ideal. The largest possible value for H is ln(k-1),

and its smallest value is zero.

For a random sample of n examinees, let xi be the number who choose

the correct response on the ith try.- The maximum likelihood estimate of

x
i+1

H = - ln
n-x1 n-x

1



4

where the estimate is taken to be ln(k-1) when n=x
1
(cf. Gill &,Joanes,

1979; Basharin, 1959; Hutcheson & Shenton, 1974).

The purpose of this-note is to indicate how the polarization test

recently proposed by Alam and Mitra (1981) might be extended to make,in-

ferences about H. Interest is focused upon testing the hypothesis

H
0'

H < h

where h is a known constant. An important special case is h=ln(k-1) which*.

corresponds to testing whether guessing is at random. The appeal of the

procedure outlined here is that the exact distribution of a statistic

d used by Alam and Mitra, which is described below, can be used to compare

H to h. This is important because asymptotic approximations of the distri-

bution*of H tend to be unsatisfactory unless n is very large (Bowman,_et al.,

. 4 1971). Comments by Alam and Mitra (1981) indirectly confirm this.

2. COMMENTS ON H, MAJORIZATION AND SCHUR FUNCTIONS

When making inferences about H, the natural procedure is to use A which

is given in equation 3. However, the exact distribution of fl is rather com-

plex and cumbersome to work with (Bowman; et al., 1 Instead the

Aillik
statistic

k

T(X) =
i=2 4

is used. Note that if T(X) is divided by (n-x1) we get an estimate of

E p.
2

which is known ,O SiMioson's meal' of diversity (Simpson, 1949).
i=1 1

281
po.
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At first glance it might appear that equation 4 is completely unjustified

when making inferences about H, but in terms of majorization and Schur

functions (which are defined below) this is not the case. The goal in this

section is to briefly outline why this is true. Additional clarification

of this point will be made in a later section.

Consider any two vectors a=(al, ak) and b=(bi, bk), and

let a
[1]

> a[2] > > a
[k]

be the components of a written in descending

order. The vector a is said to majorize the vector b, written,a>mb, or

b <ma, if

j j
Ea>zb

i =1 [1] [ii,

et:
E ar.,= E br.

1=a 1=1

j=1, k-1

wherep-is.definedinthesamemanneraspb] aj ,For example,

-(1, .:., 0) > m(1/2, 11, 0, ..., 0) > m... > m(i/k,

A real valued function is said to' be Schur convex if a>mb implies

that cp(a)>cp(b). If a>mb implies cp(a)<4(b), the function 4 is Schur-concave.

. In statistics there has been an increasing interest in ScHur functions, and

results in Al am and Mitra are 'formulated in terms of these concepts*. For a

recent summary of various results on Schur functions, see lkarshallandOlkin

(1979).

To motivate the use of equatiOn 4, first.we note that given. x1. T is

4

.0 Schur convex function of (x
2 **,

x
n
), and H is Schur concave. This

282
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means that in the sense of majorization, both T and H can be used to measure

the inequality of the pi's, and indeed both measures are used. To put it

another way, comparing H to h is comparable to comparing 0 to some known

vector pa, the comparison being made in terms of majorization. In fact,

this is exactly what Alam and Mitra (1981) do in their paper, but they

started with p0 rather than h. As explained in more detail below, it is

possibly to start with h, and then formulate the problem in terns of com-

paring p to p0. Ohce this is done, it is possibh to make use of the

results given by Alam and Mitra, but as will become evident, certain modi-

fications of their results will be needed.

/id

3.---DETERMING-A-p--UREN h IS GIVEN
/

Suppose h has been specified. This section outlites how the problem

of comparing H to h might be reformulated in terms of comparing p to some

known vector p0. First note that if h=ln(k-:1), which is the maximum possible

value of H(p); comparing H to h is-the same as comparing p to

00=((k-1)-1, (k-1)-1).

Next let h be any real number between 0 and ln(k-1). Since H is

Schur concave, there is an integer m such that *S

pr(l/m,...,1/m,Q,,..,0)>mpr(1/(m+1),...,1/(m+1),0,...,0)

and H(pd<h<H(p2) where pi has m elements equal to m-1 and_p2 has mi-1

,r.tlements equal to (m+1)-1. ?Moreover, for any c such that 0<c<m-1-(m +1)

P =

and pi>mp3.

m 1-c, mc, 0, 0)>
m
p2,

4

283
a



7

In addition, as c increases, p3 decreases in the sense of majorization.

Thus, for any h, 0<h<ln(k-1), it is possible to find a vector p0 such

that H(p0)=h.

For example, suppose an item has 4 alternatives. maximum possible

value for the entropy of the distractors is ln(3)=1.0986. Suppose we want

to determine whether the distractorsshave at least 80% of the maximum

possible entropy. This corresponds to comparing H to h=.88. H(1/2,1/2,0)=.693,

and so we, determine p0, (1/2,1/2,0)>mpem(1/3,1/3,1/3),such that H(p0) =.8. For

vectors of the form (2
-1

-c, 2
-1

-c, 2c), c can be determined so that

H(31- , 2c)=.8. The answer is approximately c=1/32, and so

p0 =(1 2, 15/32, 2/32). In summary, comparing H to .88 is, in the sense

of majorization,comparable to comparing p to p0= (15/32, 1532, 2/32).'

4. THE POLARIZATION TEST

The point of the previous secti is that he problem of comparing H
\

%
to h, or comparing any measure of dive sity a known constant, can be-

reformulated in terms of comparing an un .vim vector to a known vector in
...

the sense of majorizOt6n. This can be done if the measure of diversity

is a Schur function. This section considers how p might be compared to

p0 once.p0 is determined.

The Distribution of T

The first step in devising a met6Vd of comparing kto po is to derive

the exact distribution of T. First, however, we will need the distribution

of
k 9

S(X) = Xt.

.i=1 1

where X=(xl, xk):

284
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We note that expression (2.1) in Al m and Mitra (1981) is supposed to be

the distribution of S(X) for k=2. Ho ever, the maximum possible value of

S is n2, not n, and so the inequalities)in their expression (2.1) are

incorrect. Another problem is that.t.9(smallest possible value of S is

n2/2 if n is even, an'd (n-1)(n+1)/2 if n is odd; it is not n/24as implied

by Alam and Mitra's equation (2.1). The same mistakes are made in expres-

sion (2.2), and their expression (2.2) contains two other typographical

errors. However, even if these corrections are made, the limits on the

summation in their expression (2.1) are incorrect. As a simple example,

suppose n=3. Then Pr (S(X)5)=M2(1- ) [ 3 jci

1
q
1

(1- )
2
which does not

2
o
.1

0
1.

agree with their results. Accordingly, the exact distribution of S(i)

is derived here.

First consider k=2, let c
Y
=0 if y=n/2; otherwise c =1. Let a be

the smallest integer greater than or equal to n/2L and let b be the

largest integer less than or equal to z-n/2, where z is the largest inte-

ger such that z(n-z)>(n
2
-s)/2. Then

a+b

Pr(S(X)<s) = z

.y=a

4

( n

p
(6)

IYJ.1 91 Lytn-y1

Next consider k=3. Since the joint probability function of x2 and

x3 given x1 is binomial with parameters q1 /(1-q3), q2 /(1 -q3) and n-x1,

Pr(S(X)<51y= E 1 rzt
ya

q

1
y n-xl-y TZ:Ti 1-q

1

n-y-x Y

where n -x1 replaces n in the definition of cy, a, b and z. Let
1 Y

Dk_1(s, xi) represent the right-hand side of this last equality where

4

285
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Dk_1(s, x1) =1 if ss(n-x1)
2

. If ri-xl is even, Dk_1(s, x1) equals zero if

s<(n-x1)2/2, and if n is odd it is zero if s<(n-x1-1)(n-x1+1)/2. It follows

that
n

Pr(S(X)<s) = E

0
Dk_1(s,x3)

xi
{11

el (1.11)n-xl
.- (7)

x
1

] 1

.

For k>3,,the distribution of S(X) can be obtained recursively in the same

manner.

Having established the distribution of S(X), it is now possible to

test the hypothesis HA which, via majorization, is comparable to testing

2.<11120-

Let Bk(s;q1,...,qk,n)=Pr(S(X)<s). In terms of the xi's, the decision

rule is to reject Ho if

A
2

E X.>
i=2 1

where t is to be determined. From equation 7

[

k 2

1
Pr

i

E

2

Xi <tl . = 8 f Dt:
k -1 ( .) .1' '"' Pk-1' 11-x1)

=

where, as before, pi=qi+1/(1-q1).

(8)

Since underthe null hypothesis p=p
0'

equation 8 can be evaluated,

and so for any observed x1, the probabqity of a type I error can be

determined for any t.

An Illustration

As a simple illustration; suppose k=3 and it is decided to test

, H H > .5.



Frbm section 3, p0 is approximately (.8, .2) which, ih the sense of

majorization, is the same as (.2, .8). Thus, in terms of the polarization

test,

H0: p < m (.8, .21.

Suppose n=100 examinees are randomly sampled and that x1=75, x2=21

and x
3
=4 are observed. Then E

3
x.=457. Setting p=(.8, .2), equation 8

i=2 1

yields the value of Pr(T(X)<4251x1=75) vhich in turn gives the value of

Pr(T(X)>4251x1=75). Using the tables in Pearson (1968), the latter value

was found to be .4206, and so the observedx's are reasonably consistent

with the null hypothesis. If instead xe.24, and x3=1, Pr(T(X)>5771x1=75)=.023,

and so the results would be significant at the .05 level.

An optimal property of the test. A desirable property of any hypo-

thesis testing procedure is that as the unknown parameters move away from

the null hypothesis, the power of the test increases. Here this Means

that-if p- and p" are any two vectors such that r>m p">m 1)0, we want the

power of the test p<m p0 to be larger at.p=p- than it is at p=p". That

this property holds follows immediately from a theorem in Marshall andOlkin

(1979, p. 391). Thus, we have an additional justifiction for using the

polarization test as it is outlined above.

SUMMARY

A

In summary, the paper describes how hypotheses about the effectiveness

of the distractorsof multiple choice test items might be tested. Included

AS a special case is an exact test for random gudssing that can be used in



-ow

11.

co unction with an answer-until-correct scoring procbdure. This Is in

contrast to the asymptotic test for random gu&stl'ing (which doesoot use

an-answer-until-correct scoring rule) that was proposed by We' zman (1970).

Another point that it is not being recommended th an item be

modified if H
0

is rqje ted. Wilcox (1981a) describes how '6e accuracylof

a test item can be estimated. If the accuracy is high, tbgre may be little
\-7

reason for trying to improve the distractors by.ensurin

The 'reason is that any improvements in the distractors might .yield

negligible increase,in item accuracy. 'However, if accuracy is moderate

or small, and if H0 is rejected,CCOZTCCration be given o improving

the distractors.
r

288
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